Yichen Chen , Liping Pan , Yawei Li , Ning Liao , Qingyou Zhu
{"title":"刚玉浇注料中尖晶石-铝酸钙复合骨料的相变蓄热与自愈机理","authors":"Yichen Chen , Liping Pan , Yawei Li , Ning Liao , Qingyou Zhu","doi":"10.1016/j.jeurceramsoc.2024.116996","DOIUrl":null,"url":null,"abstract":"<div><div>Corundum-spinel castable is a vital refractory material used in steel ladle linings. Conventional approaches for assessing the thermal shock resistance of corundum-spinel refractory are not entirely representative of the actual application scenarios. This study investigates the influence of spinel-calcium aluminate composite aggregate on the thermal shock resistance of corundum castable using supersonic frequency induction heating technology. The research uncovers how CMA aggregate enhances the thermal shock resistance of corundum castable by cyclic thermal shock tests under varying operational conditions. Results reveal that the incorporation of CMA aggregate led to significant improvements in cold crushing strength and strength retention ratio following thermal shocks. The observed enhancement predominantly stems from the presence of CA/CA<sub>2</sub> phase within the CMA aggregate, which undergoes a solid-liquid phase transition at high temperatures, enabling the absorption and retention of substantial heat and aiding in the repair of microcracks within the materials and at the interfacial regions.</div></div>","PeriodicalId":17408,"journal":{"name":"Journal of The European Ceramic Society","volume":"45 3","pages":"Article 116996"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase transition heat storage and self-healing mechanism of spinel-calcium aluminate composite aggregate in corundum castable\",\"authors\":\"Yichen Chen , Liping Pan , Yawei Li , Ning Liao , Qingyou Zhu\",\"doi\":\"10.1016/j.jeurceramsoc.2024.116996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Corundum-spinel castable is a vital refractory material used in steel ladle linings. Conventional approaches for assessing the thermal shock resistance of corundum-spinel refractory are not entirely representative of the actual application scenarios. This study investigates the influence of spinel-calcium aluminate composite aggregate on the thermal shock resistance of corundum castable using supersonic frequency induction heating technology. The research uncovers how CMA aggregate enhances the thermal shock resistance of corundum castable by cyclic thermal shock tests under varying operational conditions. Results reveal that the incorporation of CMA aggregate led to significant improvements in cold crushing strength and strength retention ratio following thermal shocks. The observed enhancement predominantly stems from the presence of CA/CA<sub>2</sub> phase within the CMA aggregate, which undergoes a solid-liquid phase transition at high temperatures, enabling the absorption and retention of substantial heat and aiding in the repair of microcracks within the materials and at the interfacial regions.</div></div>\",\"PeriodicalId\":17408,\"journal\":{\"name\":\"Journal of The European Ceramic Society\",\"volume\":\"45 3\",\"pages\":\"Article 116996\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The European Ceramic Society\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955221924008690\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The European Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955221924008690","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Phase transition heat storage and self-healing mechanism of spinel-calcium aluminate composite aggregate in corundum castable
Corundum-spinel castable is a vital refractory material used in steel ladle linings. Conventional approaches for assessing the thermal shock resistance of corundum-spinel refractory are not entirely representative of the actual application scenarios. This study investigates the influence of spinel-calcium aluminate composite aggregate on the thermal shock resistance of corundum castable using supersonic frequency induction heating technology. The research uncovers how CMA aggregate enhances the thermal shock resistance of corundum castable by cyclic thermal shock tests under varying operational conditions. Results reveal that the incorporation of CMA aggregate led to significant improvements in cold crushing strength and strength retention ratio following thermal shocks. The observed enhancement predominantly stems from the presence of CA/CA2 phase within the CMA aggregate, which undergoes a solid-liquid phase transition at high temperatures, enabling the absorption and retention of substantial heat and aiding in the repair of microcracks within the materials and at the interfacial regions.
期刊介绍:
The Journal of the European Ceramic Society publishes the results of original research and reviews relating to ceramic materials. Papers of either an experimental or theoretical character will be welcomed on a fully international basis. The emphasis is on novel generic science concerning the relationships between processing, microstructure and properties of polycrystalline ceramics consolidated at high temperature. Papers may relate to any of the conventional categories of ceramic: structural, functional, traditional or composite. The central objective is to sustain a high standard of research quality by means of appropriate reviewing procedures.