具有片状混合非线性-线性恢复力的质量-质量单元的随机优化

IF 4.3 2区 工程技术 Q1 ACOUSTICS
C. da Silveira Zanin , S. Missoum , A. Ture Savadkoohi , S. Baguet , E. Gourdon , R. Dufour
{"title":"具有片状混合非线性-线性恢复力的质量-质量单元的随机优化","authors":"C. da Silveira Zanin ,&nbsp;S. Missoum ,&nbsp;A. Ture Savadkoohi ,&nbsp;S. Baguet ,&nbsp;E. Gourdon ,&nbsp;R. Dufour","doi":"10.1016/j.jsv.2024.118755","DOIUrl":null,"url":null,"abstract":"<div><div>This article investigates the optimization under uncertainty of a mass-in-mass meta-cell for its potential use within a metamaterial. The specificity of the proposed mass-in-mass system stems from the hybrid nonlinear–linear stiffness at the inner level. It is well known that these systems are highly sensitivity to small perturbations in loading conditions or design parameters. In fact, the sensitivity is such that the system can exhibit discontinuous behaviors. Therefore the proposed optimization approach not only accounts for sources of uncertainties but also can handle discontinuous responses. The objective of the stochastic optimization is to find the stiffness properties of the mass-in-mass system which minimize the expected value of a specific efficiency metric. In order to better understand the system’s dynamic behavior and the origins of the discontinuities, slow invariant manifolds and frequency response curves are provided. The efficiency of the optimized system with hybrid stiffness is compared with that of a similar optimized system featuring pure cubic nonlinearity.</div></div>","PeriodicalId":17233,"journal":{"name":"Journal of Sound and Vibration","volume":"595 ","pages":"Article 118755"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic optimization of a mass-in-mass cell with piecewise hybrid nonlinear–linear restoring force\",\"authors\":\"C. da Silveira Zanin ,&nbsp;S. Missoum ,&nbsp;A. Ture Savadkoohi ,&nbsp;S. Baguet ,&nbsp;E. Gourdon ,&nbsp;R. Dufour\",\"doi\":\"10.1016/j.jsv.2024.118755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article investigates the optimization under uncertainty of a mass-in-mass meta-cell for its potential use within a metamaterial. The specificity of the proposed mass-in-mass system stems from the hybrid nonlinear–linear stiffness at the inner level. It is well known that these systems are highly sensitivity to small perturbations in loading conditions or design parameters. In fact, the sensitivity is such that the system can exhibit discontinuous behaviors. Therefore the proposed optimization approach not only accounts for sources of uncertainties but also can handle discontinuous responses. The objective of the stochastic optimization is to find the stiffness properties of the mass-in-mass system which minimize the expected value of a specific efficiency metric. In order to better understand the system’s dynamic behavior and the origins of the discontinuities, slow invariant manifolds and frequency response curves are provided. The efficiency of the optimized system with hybrid stiffness is compared with that of a similar optimized system featuring pure cubic nonlinearity.</div></div>\",\"PeriodicalId\":17233,\"journal\":{\"name\":\"Journal of Sound and Vibration\",\"volume\":\"595 \",\"pages\":\"Article 118755\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sound and Vibration\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022460X24005170\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sound and Vibration","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022460X24005170","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在不确定条件下如何优化质量-质量元胞,使其在超材料中得到潜在应用。所提议的质量-质量系统的特殊性源于内部的混合非线性刚度。众所周知,这些系统对加载条件或设计参数的微小扰动非常敏感。事实上,这种敏感性使得系统可以表现出不连续的行为。因此,建议的优化方法不仅要考虑不确定因素的来源,还要能处理不连续的响应。随机优化的目标是找到质量-质量系统的刚度特性,使特定效率指标的预期值最小。为了更好地理解系统的动态行为和不连续性的起源,提供了慢速不变流形和频率响应曲线。混合刚度优化系统的效率与纯立方非线性类似优化系统的效率进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic optimization of a mass-in-mass cell with piecewise hybrid nonlinear–linear restoring force
This article investigates the optimization under uncertainty of a mass-in-mass meta-cell for its potential use within a metamaterial. The specificity of the proposed mass-in-mass system stems from the hybrid nonlinear–linear stiffness at the inner level. It is well known that these systems are highly sensitivity to small perturbations in loading conditions or design parameters. In fact, the sensitivity is such that the system can exhibit discontinuous behaviors. Therefore the proposed optimization approach not only accounts for sources of uncertainties but also can handle discontinuous responses. The objective of the stochastic optimization is to find the stiffness properties of the mass-in-mass system which minimize the expected value of a specific efficiency metric. In order to better understand the system’s dynamic behavior and the origins of the discontinuities, slow invariant manifolds and frequency response curves are provided. The efficiency of the optimized system with hybrid stiffness is compared with that of a similar optimized system featuring pure cubic nonlinearity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Sound and Vibration
Journal of Sound and Vibration 工程技术-工程:机械
CiteScore
9.10
自引率
10.60%
发文量
551
审稿时长
69 days
期刊介绍: The Journal of Sound and Vibration (JSV) is an independent journal devoted to the prompt publication of original papers, both theoretical and experimental, that provide new information on any aspect of sound or vibration. There is an emphasis on fundamental work that has potential for practical application. JSV was founded and operates on the premise that the subject of sound and vibration requires a journal that publishes papers of a high technical standard across the various subdisciplines, thus facilitating awareness of techniques and discoveries in one area that may be applicable in others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信