用于识别 WWER 型核反应堆中受扰动燃料组件的机器学习方法比较研究

IF 1.9 3区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY
A. Kamkar, M. Abbasi
{"title":"用于识别 WWER 型核反应堆中受扰动燃料组件的机器学习方法比较研究","authors":"A. Kamkar,&nbsp;M. Abbasi","doi":"10.1016/j.anucene.2024.110992","DOIUrl":null,"url":null,"abstract":"<div><div>Enhancing the safety of nuclear power plants relies on the prompt and accurate identification of potential anomalies within the reactor. This paper explores the application of machine learning techniques for the identification and localization of perturbed fuel assemblies in WWER-type reactors. Various machine learning classifiers, spanning the decision tree, random forest, k-nearest neighbors, multilayer perceptron, support vector machine, and 1D-convolutional neural network, are scrutinized for their performance under diverse conditions.</div><div>The methodology encompasses data collection, data preprocessing, hyperparameter tuning, and model evaluation. The necessary dataset is generated using DYNOSIM to simulate all conceivable scenarios related to fuel assembly vibration in a WWER-type reactor. In addition to assessing the models under clear and complete input conditions, a sensitivity analysis is performed to gauge the models’ resilience to detector failures and the introduction of white noise. A comparative analysis of the six machine learning classification models reveals that multilayer perceptron, support vector machine, and 1D-convolutional neural network display the most sturdy classification performance, achieving accuracies of 76.38 %, 70.85 %, and 74.64 %, respectively.</div></div>","PeriodicalId":8006,"journal":{"name":"Annals of Nuclear Energy","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparative study of machine learning approaches for identification of perturbed fuel assemblies in WWER-type nuclear reactors\",\"authors\":\"A. Kamkar,&nbsp;M. Abbasi\",\"doi\":\"10.1016/j.anucene.2024.110992\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Enhancing the safety of nuclear power plants relies on the prompt and accurate identification of potential anomalies within the reactor. This paper explores the application of machine learning techniques for the identification and localization of perturbed fuel assemblies in WWER-type reactors. Various machine learning classifiers, spanning the decision tree, random forest, k-nearest neighbors, multilayer perceptron, support vector machine, and 1D-convolutional neural network, are scrutinized for their performance under diverse conditions.</div><div>The methodology encompasses data collection, data preprocessing, hyperparameter tuning, and model evaluation. The necessary dataset is generated using DYNOSIM to simulate all conceivable scenarios related to fuel assembly vibration in a WWER-type reactor. In addition to assessing the models under clear and complete input conditions, a sensitivity analysis is performed to gauge the models’ resilience to detector failures and the introduction of white noise. A comparative analysis of the six machine learning classification models reveals that multilayer perceptron, support vector machine, and 1D-convolutional neural network display the most sturdy classification performance, achieving accuracies of 76.38 %, 70.85 %, and 74.64 %, respectively.</div></div>\",\"PeriodicalId\":8006,\"journal\":{\"name\":\"Annals of Nuclear Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Nuclear Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306454924006558\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306454924006558","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

提高核电站的安全性有赖于及时准确地识别反应堆内潜在的异常情况。本文探讨了机器学习技术在 WWER 型反应堆中扰动燃料组件的识别和定位中的应用。本文仔细研究了各种机器学习分类器在不同条件下的性能,包括决策树、随机森林、k-近邻、多层感知器、支持向量机和一维卷积神经网络。使用 DYNOSIM 生成必要的数据集,以模拟与 WWER 型反应堆中燃料组件振动有关的所有可以想象的情况。除了在清晰和完整的输入条件下对模型进行评估外,还进行了敏感性分析,以衡量模型对探测器故障和白噪声引入的适应能力。对六种机器学习分类模型的比较分析表明,多层感知器、支持向量机和一维卷积神经网络的分类性能最为出色,准确率分别达到 76.38 %、70.85 % 和 74.64 %。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparative study of machine learning approaches for identification of perturbed fuel assemblies in WWER-type nuclear reactors
Enhancing the safety of nuclear power plants relies on the prompt and accurate identification of potential anomalies within the reactor. This paper explores the application of machine learning techniques for the identification and localization of perturbed fuel assemblies in WWER-type reactors. Various machine learning classifiers, spanning the decision tree, random forest, k-nearest neighbors, multilayer perceptron, support vector machine, and 1D-convolutional neural network, are scrutinized for their performance under diverse conditions.
The methodology encompasses data collection, data preprocessing, hyperparameter tuning, and model evaluation. The necessary dataset is generated using DYNOSIM to simulate all conceivable scenarios related to fuel assembly vibration in a WWER-type reactor. In addition to assessing the models under clear and complete input conditions, a sensitivity analysis is performed to gauge the models’ resilience to detector failures and the introduction of white noise. A comparative analysis of the six machine learning classification models reveals that multilayer perceptron, support vector machine, and 1D-convolutional neural network display the most sturdy classification performance, achieving accuracies of 76.38 %, 70.85 %, and 74.64 %, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Nuclear Energy
Annals of Nuclear Energy 工程技术-核科学技术
CiteScore
4.30
自引率
21.10%
发文量
632
审稿时长
7.3 months
期刊介绍: Annals of Nuclear Energy provides an international medium for the communication of original research, ideas and developments in all areas of the field of nuclear energy science and technology. Its scope embraces nuclear fuel reserves, fuel cycles and cost, materials, processing, system and component technology (fission only), design and optimization, direct conversion of nuclear energy sources, environmental control, reactor physics, heat transfer and fluid dynamics, structural analysis, fuel management, future developments, nuclear fuel and safety, nuclear aerosol, neutron physics, computer technology (both software and hardware), risk assessment, radioactive waste disposal and reactor thermal hydraulics. Papers submitted to Annals need to demonstrate a clear link to nuclear power generation/nuclear engineering. Papers which deal with pure nuclear physics, pure health physics, imaging, or attenuation and shielding properties of concretes and various geological materials are not within the scope of the journal. Also, papers that deal with policy or economics are not within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信