{"title":"大数据中群体套索的新型差分私有在线学习算法","authors":"Jinxia Li, Liwei Lu","doi":"10.1049/2024/5553292","DOIUrl":null,"url":null,"abstract":"<div>\n <p>This study addresses the challenge of extracting valuable information and selecting key variables from large datasets, essential across statistics, computational science, and data science. In the age of big data, where safeguarding personal privacy is paramount, this study presents an online learning algorithm that leverages differential privacy to handle large-scale data effectively. The focus is on enhancing the online group lasso approach within the differential privacy realm. The study begins by comparing online and offline learning approaches and classifying common online learning techniques. It proceeds to elucidate the concept of differential privacy and its importance. By enhancing the group-follow-the-proximally-regularized-leader (GFTPRL) algorithm, we have created a new method for the online group lasso model that integrates differential privacy for binary classification in logistic regression. The research offers a solid validation of the algorithm’s effectiveness based on differential privacy and online learning principles. The algorithm’s performance was thoroughly evaluated through simulations with both synthetic and actual data. The comparison is made between the proposed privacy-preserving algorithm and traditional non-privacy-preserving counterparts, with a focus on regret bounds, a measure of performance. The findings underscore the practical benefits of the differential privacy-preserving algorithm in tackling large-scale data analysis while upholding privacy standards. This research marks a significant step forward in the fusion of big data analytics and the safeguarding of individual privacy.</p>\n </div>","PeriodicalId":50380,"journal":{"name":"IET Information Security","volume":"2024 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/5553292","citationCount":"0","resultStr":"{\"title\":\"A Novel Differentially Private Online Learning Algorithm for Group Lasso in Big Data\",\"authors\":\"Jinxia Li, Liwei Lu\",\"doi\":\"10.1049/2024/5553292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>This study addresses the challenge of extracting valuable information and selecting key variables from large datasets, essential across statistics, computational science, and data science. In the age of big data, where safeguarding personal privacy is paramount, this study presents an online learning algorithm that leverages differential privacy to handle large-scale data effectively. The focus is on enhancing the online group lasso approach within the differential privacy realm. The study begins by comparing online and offline learning approaches and classifying common online learning techniques. It proceeds to elucidate the concept of differential privacy and its importance. By enhancing the group-follow-the-proximally-regularized-leader (GFTPRL) algorithm, we have created a new method for the online group lasso model that integrates differential privacy for binary classification in logistic regression. The research offers a solid validation of the algorithm’s effectiveness based on differential privacy and online learning principles. The algorithm’s performance was thoroughly evaluated through simulations with both synthetic and actual data. The comparison is made between the proposed privacy-preserving algorithm and traditional non-privacy-preserving counterparts, with a focus on regret bounds, a measure of performance. The findings underscore the practical benefits of the differential privacy-preserving algorithm in tackling large-scale data analysis while upholding privacy standards. This research marks a significant step forward in the fusion of big data analytics and the safeguarding of individual privacy.</p>\\n </div>\",\"PeriodicalId\":50380,\"journal\":{\"name\":\"IET Information Security\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/5553292\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Information Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/2024/5553292\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Information Security","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/5553292","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A Novel Differentially Private Online Learning Algorithm for Group Lasso in Big Data
This study addresses the challenge of extracting valuable information and selecting key variables from large datasets, essential across statistics, computational science, and data science. In the age of big data, where safeguarding personal privacy is paramount, this study presents an online learning algorithm that leverages differential privacy to handle large-scale data effectively. The focus is on enhancing the online group lasso approach within the differential privacy realm. The study begins by comparing online and offline learning approaches and classifying common online learning techniques. It proceeds to elucidate the concept of differential privacy and its importance. By enhancing the group-follow-the-proximally-regularized-leader (GFTPRL) algorithm, we have created a new method for the online group lasso model that integrates differential privacy for binary classification in logistic regression. The research offers a solid validation of the algorithm’s effectiveness based on differential privacy and online learning principles. The algorithm’s performance was thoroughly evaluated through simulations with both synthetic and actual data. The comparison is made between the proposed privacy-preserving algorithm and traditional non-privacy-preserving counterparts, with a focus on regret bounds, a measure of performance. The findings underscore the practical benefits of the differential privacy-preserving algorithm in tackling large-scale data analysis while upholding privacy standards. This research marks a significant step forward in the fusion of big data analytics and the safeguarding of individual privacy.
期刊介绍:
IET Information Security publishes original research papers in the following areas of information security and cryptography. Submitting authors should specify clearly in their covering statement the area into which their paper falls.
Scope:
Access Control and Database Security
Ad-Hoc Network Aspects
Anonymity and E-Voting
Authentication
Block Ciphers and Hash Functions
Blockchain, Bitcoin (Technical aspects only)
Broadcast Encryption and Traitor Tracing
Combinatorial Aspects
Covert Channels and Information Flow
Critical Infrastructures
Cryptanalysis
Dependability
Digital Rights Management
Digital Signature Schemes
Digital Steganography
Economic Aspects of Information Security
Elliptic Curve Cryptography and Number Theory
Embedded Systems Aspects
Embedded Systems Security and Forensics
Financial Cryptography
Firewall Security
Formal Methods and Security Verification
Human Aspects
Information Warfare and Survivability
Intrusion Detection
Java and XML Security
Key Distribution
Key Management
Malware
Multi-Party Computation and Threshold Cryptography
Peer-to-peer Security
PKIs
Public-Key and Hybrid Encryption
Quantum Cryptography
Risks of using Computers
Robust Networks
Secret Sharing
Secure Electronic Commerce
Software Obfuscation
Stream Ciphers
Trust Models
Watermarking and Fingerprinting
Special Issues. Current Call for Papers:
Security on Mobile and IoT devices - https://digital-library.theiet.org/files/IET_IFS_SMID_CFP.pdf