{"title":"基于递归神经网络辅助卡尔曼滤波器的结构动态响应重构","authors":"Yiqing Wang, Mingming Song, Ao Wang, Limin Sun","doi":"10.1155/2024/7481513","DOIUrl":null,"url":null,"abstract":"<div>\n <p>In structural health monitoring (SHM), an important issue is the limited availability of measurement data due to the spatial sparsity of sensors installed on the structure. These measurements are insufficient to accurately depict the actual dynamic behavior and response of the structure. Therefore, full-field (i.e., every degree of freedom) structural response reconstruction based on sparse measured data has drawn a lot of attention in recent years. Kalman filter (KF) is an effective technology for response reconstruction (also known as state estimation), providing an optimal solution for systems that can be well-represented by a fully known Gaussian linear state-space model. This implies that both the process noise and measurement noise follow known zero-mean Gaussian distribution, which is impractical in many civil engineering applications considering the unavoidable modeling errors and variations of environmental conditions. To address this challenge, a data-physics hybrid-driven method, i.e., KalmanNet, is proposed in this study for response reconstruction of partially known systems. By integrating a recurrent neural network (RNN) module into the KF framework, KalmanNet can efficiently learn and compute the Kalman gain using available monitoring data, without any Gaussian assumptions or explicit noise covariance specifications (e.g., covariance matrices of process and measurement noise). Both numerical and experimental investigations are conducted to validate this method. The results demonstrate that under the influence of non-Gaussian noise and modeling errors, KalmanNet can effectively and accurately reconstruct the structural response from sparse measurements in real-time and has higher accuracy and robustness compared to traditional KF even with optimal parameter settings.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2024 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/7481513","citationCount":"0","resultStr":"{\"title\":\"Structural Dynamic Response Reconstruction Based on Recurrent Neural Network–Aided Kalman Filter\",\"authors\":\"Yiqing Wang, Mingming Song, Ao Wang, Limin Sun\",\"doi\":\"10.1155/2024/7481513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>In structural health monitoring (SHM), an important issue is the limited availability of measurement data due to the spatial sparsity of sensors installed on the structure. These measurements are insufficient to accurately depict the actual dynamic behavior and response of the structure. Therefore, full-field (i.e., every degree of freedom) structural response reconstruction based on sparse measured data has drawn a lot of attention in recent years. Kalman filter (KF) is an effective technology for response reconstruction (also known as state estimation), providing an optimal solution for systems that can be well-represented by a fully known Gaussian linear state-space model. This implies that both the process noise and measurement noise follow known zero-mean Gaussian distribution, which is impractical in many civil engineering applications considering the unavoidable modeling errors and variations of environmental conditions. To address this challenge, a data-physics hybrid-driven method, i.e., KalmanNet, is proposed in this study for response reconstruction of partially known systems. By integrating a recurrent neural network (RNN) module into the KF framework, KalmanNet can efficiently learn and compute the Kalman gain using available monitoring data, without any Gaussian assumptions or explicit noise covariance specifications (e.g., covariance matrices of process and measurement noise). Both numerical and experimental investigations are conducted to validate this method. The results demonstrate that under the influence of non-Gaussian noise and modeling errors, KalmanNet can effectively and accurately reconstruct the structural response from sparse measurements in real-time and has higher accuracy and robustness compared to traditional KF even with optimal parameter settings.</p>\\n </div>\",\"PeriodicalId\":49471,\"journal\":{\"name\":\"Structural Control & Health Monitoring\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/7481513\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Control & Health Monitoring\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/7481513\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/7481513","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Structural Dynamic Response Reconstruction Based on Recurrent Neural Network–Aided Kalman Filter
In structural health monitoring (SHM), an important issue is the limited availability of measurement data due to the spatial sparsity of sensors installed on the structure. These measurements are insufficient to accurately depict the actual dynamic behavior and response of the structure. Therefore, full-field (i.e., every degree of freedom) structural response reconstruction based on sparse measured data has drawn a lot of attention in recent years. Kalman filter (KF) is an effective technology for response reconstruction (also known as state estimation), providing an optimal solution for systems that can be well-represented by a fully known Gaussian linear state-space model. This implies that both the process noise and measurement noise follow known zero-mean Gaussian distribution, which is impractical in many civil engineering applications considering the unavoidable modeling errors and variations of environmental conditions. To address this challenge, a data-physics hybrid-driven method, i.e., KalmanNet, is proposed in this study for response reconstruction of partially known systems. By integrating a recurrent neural network (RNN) module into the KF framework, KalmanNet can efficiently learn and compute the Kalman gain using available monitoring data, without any Gaussian assumptions or explicit noise covariance specifications (e.g., covariance matrices of process and measurement noise). Both numerical and experimental investigations are conducted to validate this method. The results demonstrate that under the influence of non-Gaussian noise and modeling errors, KalmanNet can effectively and accurately reconstruct the structural response from sparse measurements in real-time and has higher accuracy and robustness compared to traditional KF even with optimal parameter settings.
期刊介绍:
The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications.
Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics.
Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.