全面回顾粉煤灰:环境影响与应用

IF 1.5 Q4 ENGINEERING, ENVIRONMENTAL
Vaibhav Sharma, Subhakanta Dash, Piyush Gupta
{"title":"全面回顾粉煤灰:环境影响与应用","authors":"Vaibhav Sharma,&nbsp;Subhakanta Dash,&nbsp;Piyush Gupta","doi":"10.1002/tqem.22338","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Fly ash (FyA), a byproduct from coal combustion in power plants, has become increasingly valuable due to its pozzolanic properties. Primarily, FyA finds applications in the construction industry, including road and brick construction, forest road building, and the cement industry. When added to concrete, it enhances splitting tensile strength, compressive strength, and workability, while also reducing the environmental impact of cement production. Beyond construction, FyA is utilized for air pollutant removal and serves as an adsorbent for various contaminants. It also plays a role in creating geopolymers and nanocomposites, promoting the development of eco-friendly construction materials. This review article presents current data on thermal power plants (ThPPs) in India, the challenges in FyA management, and its environmental impact. It also discusses relevant Indian policies and highlights ongoing research aimed at improving the efficiency and expanding the applications of FyA in various industrial sectors, such as battery manufacturing, zeolite synthesis, and cenosphere extraction. These efforts underscore FyA's potential in supporting sustainable practices. The findings of this review address critical issues related to FyA. By reducing the environmental footprint of cement manufacturing, removing air pollutants, and acting as an adsorbent for various contaminants, FyA demonstrates significant potential in pollution mitigation. It also contributes to the development of eco-friendly construction materials and promotes sustainability in the construction sector. Effective management practices are essential to minimize FyA's negative impact on human health and the environment. The article emphasizes the need for greater awareness and implementation of policies to address these issues comprehensively. By providing a detailed understanding of the benefits and challenges associated with FyA, it aims to pave the way for more effective and sustainable utilization of this industrial byproduct.</p>\n </div>","PeriodicalId":35327,"journal":{"name":"Environmental Quality Management","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive Review of Fly Ash: Environmental Impact and Applications\",\"authors\":\"Vaibhav Sharma,&nbsp;Subhakanta Dash,&nbsp;Piyush Gupta\",\"doi\":\"10.1002/tqem.22338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Fly ash (FyA), a byproduct from coal combustion in power plants, has become increasingly valuable due to its pozzolanic properties. Primarily, FyA finds applications in the construction industry, including road and brick construction, forest road building, and the cement industry. When added to concrete, it enhances splitting tensile strength, compressive strength, and workability, while also reducing the environmental impact of cement production. Beyond construction, FyA is utilized for air pollutant removal and serves as an adsorbent for various contaminants. It also plays a role in creating geopolymers and nanocomposites, promoting the development of eco-friendly construction materials. This review article presents current data on thermal power plants (ThPPs) in India, the challenges in FyA management, and its environmental impact. It also discusses relevant Indian policies and highlights ongoing research aimed at improving the efficiency and expanding the applications of FyA in various industrial sectors, such as battery manufacturing, zeolite synthesis, and cenosphere extraction. These efforts underscore FyA's potential in supporting sustainable practices. The findings of this review address critical issues related to FyA. By reducing the environmental footprint of cement manufacturing, removing air pollutants, and acting as an adsorbent for various contaminants, FyA demonstrates significant potential in pollution mitigation. It also contributes to the development of eco-friendly construction materials and promotes sustainability in the construction sector. Effective management practices are essential to minimize FyA's negative impact on human health and the environment. The article emphasizes the need for greater awareness and implementation of policies to address these issues comprehensively. By providing a detailed understanding of the benefits and challenges associated with FyA, it aims to pave the way for more effective and sustainable utilization of this industrial byproduct.</p>\\n </div>\",\"PeriodicalId\":35327,\"journal\":{\"name\":\"Environmental Quality Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Quality Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/tqem.22338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Quality Management","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/tqem.22338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

粉煤灰(FyA)是发电厂燃煤产生的副产品,因其具有水青石特性而变得越来越有价值。粉煤灰主要应用于建筑行业,包括道路和砖块建筑、森林道路建设和水泥行业。当添加到混凝土中时,它能增强劈裂拉伸强度、抗压强度和工作性,同时还能减少水泥生产对环境的影响。除建筑业外,FyA 还可用于清除空气污染物,并可作为各种污染物的吸附剂。它还可用于制造土工聚合物和纳米复合材料,促进生态友好型建筑材料的发展。这篇综述文章介绍了印度火力发电厂(ThPPs)的当前数据、FyA 管理面临的挑战及其对环境的影响。文章还讨论了印度的相关政策,并重点介绍了正在进行的旨在提高 FyA 效率和扩大其在电池制造、沸石合成和碳圈提取等各工业领域应用的研究。这些努力凸显了 FyA 在支持可持续实践方面的潜力。本综述的结论涉及与 FyA 有关的关键问题。通过减少水泥生产对环境的影响、去除空气污染物以及作为各种污染物的吸附剂,FyA 在减轻污染方面展现出了巨大的潜力。它还有助于开发生态友好型建筑材料,促进建筑行业的可持续发展。有效的管理方法对于最大限度地减少 FyA 对人类健康和环境的负面影响至关重要。文章强调,有必要提高人们的认识并实施相关政策,以全面解决这些问题。通过详细了解与 FyA 相关的益处和挑战,文章旨在为更有效、更可持续地利用这种工业副产品铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Comprehensive Review of Fly Ash: Environmental Impact and Applications

Comprehensive Review of Fly Ash: Environmental Impact and Applications

Fly ash (FyA), a byproduct from coal combustion in power plants, has become increasingly valuable due to its pozzolanic properties. Primarily, FyA finds applications in the construction industry, including road and brick construction, forest road building, and the cement industry. When added to concrete, it enhances splitting tensile strength, compressive strength, and workability, while also reducing the environmental impact of cement production. Beyond construction, FyA is utilized for air pollutant removal and serves as an adsorbent for various contaminants. It also plays a role in creating geopolymers and nanocomposites, promoting the development of eco-friendly construction materials. This review article presents current data on thermal power plants (ThPPs) in India, the challenges in FyA management, and its environmental impact. It also discusses relevant Indian policies and highlights ongoing research aimed at improving the efficiency and expanding the applications of FyA in various industrial sectors, such as battery manufacturing, zeolite synthesis, and cenosphere extraction. These efforts underscore FyA's potential in supporting sustainable practices. The findings of this review address critical issues related to FyA. By reducing the environmental footprint of cement manufacturing, removing air pollutants, and acting as an adsorbent for various contaminants, FyA demonstrates significant potential in pollution mitigation. It also contributes to the development of eco-friendly construction materials and promotes sustainability in the construction sector. Effective management practices are essential to minimize FyA's negative impact on human health and the environment. The article emphasizes the need for greater awareness and implementation of policies to address these issues comprehensively. By providing a detailed understanding of the benefits and challenges associated with FyA, it aims to pave the way for more effective and sustainable utilization of this industrial byproduct.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Quality Management
Environmental Quality Management Environmental Science-Management, Monitoring, Policy and Law
CiteScore
2.20
自引率
0.00%
发文量
94
期刊介绍: Four times a year, this practical journal shows you how to improve environmental performance and exceed voluntary standards such as ISO 14000. In each issue, you"ll find in-depth articles and the most current case studies of successful environmental quality improvement efforts -- and guidance on how you can apply these goals to your organization. Written by leading industry experts and practitioners, Environmental Quality Management brings you innovative practices in Performance Measurement...Life-Cycle Assessments...Safety Management... Environmental Auditing...ISO 14000 Standards and Certification..."Green Accounting"...Environmental Communication...Sustainable Development Issues...Environmental Benchmarking...Global Environmental Law and Regulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信