{"title":"基于城乡划分和当地气候带的不同参考划分方法下城市热岛估算的不确定性","authors":"Xuecheng Fu;Bao-Jie He;Huimin Liu","doi":"10.1109/JSTARS.2024.3472475","DOIUrl":null,"url":null,"abstract":"The precise quantification of surface urban heat island intensity (SUHII) is fundamental for understanding the process, causes, and solutions to thermal environmental change. However, the existing methods for SUHII estimation are not uniform in nonurban reference selection, with inconsistent consideration of relevant influencing factors. The associated uncertainty can be further exacerbated under seasonal fluctuations of atmospheric and surface environments. This study concentrated on macrocity and intraurban local scales to examine the variations in SUHII assessment and its seasonal changes using different reference delineation methods. City-scale analysis included eight references based on the fixed areas or dynamic buffers, while local-scale analysis took six natural cover types as references under the local climate zone (LCZ) framework, respectively. Results revealed significant differences in SUHII using diverse references, and the inconsistency varied across seasons. On the city scale, the most pronounced intermethod difference occurred in winter, while stronger consistency of spatial patterns was observed in summer. Relatively, higher seasonal SUHIIs and stronger spatial variabilities were generated by methods using fixed areas. On the local scale, a strong consistency of spatial patterns was also observed in summer, while the most pronounced difference occurred in spring. Maximum local SUHIIs in all seasons were obtained using LCZ G as a reference. The study further summarized a list of criteria of reference selection for both scales. Overall, this study provides empirical evidence supporting the appropriate reference delineation for reliable SUHII estimate, especially for seasonal analysis. It can facilitate an improved understanding of urban thermal variations and benefit effective urban heat mitigation.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"17 ","pages":"18818-18833"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10705071","citationCount":"0","resultStr":"{\"title\":\"Uncertainties of Urban Heat Island Estimation With Diverse Reference Delineation Methods Based on Urban–Rural Division and Local Climate Zone\",\"authors\":\"Xuecheng Fu;Bao-Jie He;Huimin Liu\",\"doi\":\"10.1109/JSTARS.2024.3472475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The precise quantification of surface urban heat island intensity (SUHII) is fundamental for understanding the process, causes, and solutions to thermal environmental change. However, the existing methods for SUHII estimation are not uniform in nonurban reference selection, with inconsistent consideration of relevant influencing factors. The associated uncertainty can be further exacerbated under seasonal fluctuations of atmospheric and surface environments. This study concentrated on macrocity and intraurban local scales to examine the variations in SUHII assessment and its seasonal changes using different reference delineation methods. City-scale analysis included eight references based on the fixed areas or dynamic buffers, while local-scale analysis took six natural cover types as references under the local climate zone (LCZ) framework, respectively. Results revealed significant differences in SUHII using diverse references, and the inconsistency varied across seasons. On the city scale, the most pronounced intermethod difference occurred in winter, while stronger consistency of spatial patterns was observed in summer. Relatively, higher seasonal SUHIIs and stronger spatial variabilities were generated by methods using fixed areas. On the local scale, a strong consistency of spatial patterns was also observed in summer, while the most pronounced difference occurred in spring. Maximum local SUHIIs in all seasons were obtained using LCZ G as a reference. The study further summarized a list of criteria of reference selection for both scales. Overall, this study provides empirical evidence supporting the appropriate reference delineation for reliable SUHII estimate, especially for seasonal analysis. It can facilitate an improved understanding of urban thermal variations and benefit effective urban heat mitigation.\",\"PeriodicalId\":13116,\"journal\":{\"name\":\"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing\",\"volume\":\"17 \",\"pages\":\"18818-18833\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10705071\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10705071/\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10705071/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Uncertainties of Urban Heat Island Estimation With Diverse Reference Delineation Methods Based on Urban–Rural Division and Local Climate Zone
The precise quantification of surface urban heat island intensity (SUHII) is fundamental for understanding the process, causes, and solutions to thermal environmental change. However, the existing methods for SUHII estimation are not uniform in nonurban reference selection, with inconsistent consideration of relevant influencing factors. The associated uncertainty can be further exacerbated under seasonal fluctuations of atmospheric and surface environments. This study concentrated on macrocity and intraurban local scales to examine the variations in SUHII assessment and its seasonal changes using different reference delineation methods. City-scale analysis included eight references based on the fixed areas or dynamic buffers, while local-scale analysis took six natural cover types as references under the local climate zone (LCZ) framework, respectively. Results revealed significant differences in SUHII using diverse references, and the inconsistency varied across seasons. On the city scale, the most pronounced intermethod difference occurred in winter, while stronger consistency of spatial patterns was observed in summer. Relatively, higher seasonal SUHIIs and stronger spatial variabilities were generated by methods using fixed areas. On the local scale, a strong consistency of spatial patterns was also observed in summer, while the most pronounced difference occurred in spring. Maximum local SUHIIs in all seasons were obtained using LCZ G as a reference. The study further summarized a list of criteria of reference selection for both scales. Overall, this study provides empirical evidence supporting the appropriate reference delineation for reliable SUHII estimate, especially for seasonal analysis. It can facilitate an improved understanding of urban thermal variations and benefit effective urban heat mitigation.
期刊介绍:
The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.