PSRR-MaxpoolNMS++:利用离散化和池化实现快速非最大值抑制

Tianyi Zhang;Chunyun Chen;Yun Liu;Xue Geng;Mohamed M. Sabry Aly;Jie Lin
{"title":"PSRR-MaxpoolNMS++:利用离散化和池化实现快速非最大值抑制","authors":"Tianyi Zhang;Chunyun Chen;Yun Liu;Xue Geng;Mohamed M. Sabry Aly;Jie Lin","doi":"10.1109/TPAMI.2024.3485898","DOIUrl":null,"url":null,"abstract":"Non-maximum suppression (NMS) is an essential post-processing step for object detection. The de-facto standard for NMS, namely GreedyNMS, is not parallelizable and could thus be the performance bottleneck in object detection pipelines. MaxpoolNMS is introduced as a fast and parallelizable alternative to GreedyNMS. However, MaxpoolNMS is only capable of replacing the GreedyNMS at the first stage of two-stage detectors like Faster R-CNN. To address this issue, we observe that MaxpoolNMS employs the process of \n<italic>box coordinate discretization</i>\n followed by \n<italic>local score argmax calculation</i>\n, to discard the nested-loop pipeline in GreedyNMS to enable parallelizable implementations. In this paper, we introduce a simple \n<italic>Relationship Recovery</i>\n module and a \n<italic>Pyramid Shifted MaxpoolNMS</i>\n module to improve the above two stages, respectively. With these two modules, our \n<bold>PSRR-MaxpoolNMS</b>\n is a generic and parallelizable approach, which can completely replace GreedyNMS at all stages in all detectors. Furthermore, we extend PSRR-MaxpoolNMS to the more powerful \n<bold>PSRR-MaxpoolNMS++</b>\n. As for \n<italic>box coordinate discretization</i>\n, we propose \n<italic>Density-based Discretization</i>\n for better adherence to the target density of the suppression. As for \n<italic>local score argmax calculation</i>\n, we propose an \n<italic>Adjacent Scale Pooling</i>\n scheme for mining out the duplicated box pairs more accurately and efficiently. Extensive experiments demonstrate that both our PSRR-MaxpoolNMS and PSRR-MaxpoolNMS++ outperform MaxpoolNMS by a large margin. Additionally, PSRR-MaxpoolNMS++ not only surpasses PSRR-MaxpoolNMS but also attains competitive accuracy and much better efficiency when compared with GreedyNMS. Therefore, PSRR-MaxpoolNMS++ is a parallelizable NMS solution that can effectively replace GreedyNMS at all stages in all detectors.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 2","pages":"978-993"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PSRR-MaxpoolNMS++: Fast Non-Maximum Suppression With Discretization and Pooling\",\"authors\":\"Tianyi Zhang;Chunyun Chen;Yun Liu;Xue Geng;Mohamed M. Sabry Aly;Jie Lin\",\"doi\":\"10.1109/TPAMI.2024.3485898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-maximum suppression (NMS) is an essential post-processing step for object detection. The de-facto standard for NMS, namely GreedyNMS, is not parallelizable and could thus be the performance bottleneck in object detection pipelines. MaxpoolNMS is introduced as a fast and parallelizable alternative to GreedyNMS. However, MaxpoolNMS is only capable of replacing the GreedyNMS at the first stage of two-stage detectors like Faster R-CNN. To address this issue, we observe that MaxpoolNMS employs the process of \\n<italic>box coordinate discretization</i>\\n followed by \\n<italic>local score argmax calculation</i>\\n, to discard the nested-loop pipeline in GreedyNMS to enable parallelizable implementations. In this paper, we introduce a simple \\n<italic>Relationship Recovery</i>\\n module and a \\n<italic>Pyramid Shifted MaxpoolNMS</i>\\n module to improve the above two stages, respectively. With these two modules, our \\n<bold>PSRR-MaxpoolNMS</b>\\n is a generic and parallelizable approach, which can completely replace GreedyNMS at all stages in all detectors. Furthermore, we extend PSRR-MaxpoolNMS to the more powerful \\n<bold>PSRR-MaxpoolNMS++</b>\\n. As for \\n<italic>box coordinate discretization</i>\\n, we propose \\n<italic>Density-based Discretization</i>\\n for better adherence to the target density of the suppression. As for \\n<italic>local score argmax calculation</i>\\n, we propose an \\n<italic>Adjacent Scale Pooling</i>\\n scheme for mining out the duplicated box pairs more accurately and efficiently. Extensive experiments demonstrate that both our PSRR-MaxpoolNMS and PSRR-MaxpoolNMS++ outperform MaxpoolNMS by a large margin. Additionally, PSRR-MaxpoolNMS++ not only surpasses PSRR-MaxpoolNMS but also attains competitive accuracy and much better efficiency when compared with GreedyNMS. Therefore, PSRR-MaxpoolNMS++ is a parallelizable NMS solution that can effectively replace GreedyNMS at all stages in all detectors.\",\"PeriodicalId\":94034,\"journal\":{\"name\":\"IEEE transactions on pattern analysis and machine intelligence\",\"volume\":\"47 2\",\"pages\":\"978-993\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on pattern analysis and machine intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10736991/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10736991/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

非最大抑制(NMS)是物体检测中必不可少的后处理步骤。NMS 的事实标准,即 GreedyNMS,是不可并行化的,因此可能成为物体检测管道的性能瓶颈。MaxpoolNMS 是作为 GreedyNMS 的快速、可并行化替代品而推出的。然而,MaxpoolNMS 只能在两阶段检测器(如 Faster R-CNN)的第一阶段替代 GreedyNMS。为了解决这个问题,我们发现 MaxpoolNMS 采用了先计算盒坐标离散化,再计算局部得分 argmax 的过程,从而摒弃了 GreedyNMS 中的嵌套循环流水线,实现了可并行化实现。本文引入了简单关系恢复模块和金字塔移动 MaxpoolNMS 模块,分别对上述两个阶段进行改进。有了这两个模块,我们的 PSRR-MaxpoolNMS 是一种通用的可并行化方法,可以在所有探测器的所有阶段完全取代 GreedyNMS。此外,我们还将 PSRR-MaxpoolNMS 扩展为功能更强大的 PSRR-MaxpoolNMS++。在盒坐标离散化方面,我们提出了基于密度的离散化,以更好地遵循抑制的目标密度。在局部得分 argmax 计算方面,我们提出了相邻规模池化方案,以更准确、更高效地挖掘出重复的盒对。大量实验证明,PSRR-MaxpoolNMS 和 PSRR-MaxpoolNMS++ 的性能远远优于 MaxpoolNMS。此外,与 GreedyNMS 相比,PSRR-MaxpoolNMS++ 不仅超越了 PSRR-MaxpoolNMS,而且在准确性和效率方面也更胜一筹。因此,PSRR-MaxpoolNMS++ 是一种可并行化的 NMS 解决方案,能在所有探测器的所有阶段有效取代 GreedyNMS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PSRR-MaxpoolNMS++: Fast Non-Maximum Suppression With Discretization and Pooling
Non-maximum suppression (NMS) is an essential post-processing step for object detection. The de-facto standard for NMS, namely GreedyNMS, is not parallelizable and could thus be the performance bottleneck in object detection pipelines. MaxpoolNMS is introduced as a fast and parallelizable alternative to GreedyNMS. However, MaxpoolNMS is only capable of replacing the GreedyNMS at the first stage of two-stage detectors like Faster R-CNN. To address this issue, we observe that MaxpoolNMS employs the process of box coordinate discretization followed by local score argmax calculation , to discard the nested-loop pipeline in GreedyNMS to enable parallelizable implementations. In this paper, we introduce a simple Relationship Recovery module and a Pyramid Shifted MaxpoolNMS module to improve the above two stages, respectively. With these two modules, our PSRR-MaxpoolNMS is a generic and parallelizable approach, which can completely replace GreedyNMS at all stages in all detectors. Furthermore, we extend PSRR-MaxpoolNMS to the more powerful PSRR-MaxpoolNMS++ . As for box coordinate discretization , we propose Density-based Discretization for better adherence to the target density of the suppression. As for local score argmax calculation , we propose an Adjacent Scale Pooling scheme for mining out the duplicated box pairs more accurately and efficiently. Extensive experiments demonstrate that both our PSRR-MaxpoolNMS and PSRR-MaxpoolNMS++ outperform MaxpoolNMS by a large margin. Additionally, PSRR-MaxpoolNMS++ not only surpasses PSRR-MaxpoolNMS but also attains competitive accuracy and much better efficiency when compared with GreedyNMS. Therefore, PSRR-MaxpoolNMS++ is a parallelizable NMS solution that can effectively replace GreedyNMS at all stages in all detectors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信