Huiping Li, Yangli Jin, Yanyan Zhang, Xiaohua Xie, Nan Li
{"title":"妇科肿瘤中 NADH:Ubiquinone 氧化还原酶亚基 B3 的全面分析及其天然抑制剂蟛蜞菊内酯的鉴定","authors":"Huiping Li, Yangli Jin, Yanyan Zhang, Xiaohua Xie, Nan Li","doi":"10.1111/cbdd.70006","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The aim of this study was to explore the role of NADH:ubiquinone oxidoreductase subunit B3 (NDUFB3) in human gynecological malignancies and to screen potential natural compounds targeting it. GEPIA and HPA databases were used to study the expression characteristics of NDUFB3. GO and KEGG enrichment analyses were performed using the R software clusterProfiler package. GSEA for NDUFB3 was performed using the LinkedOmics database. Natural compounds targeting NDUFB3 were screened by virtual screening and molecular docking. After NDUFB3 was depleted or wedelolactone treatment, cell proliferation was detected by CCK-8 assay. The production of reactive oxide species (ROS) in tumor cells was detected by dihydroethidium fluorescent probe. The cell cycle and apoptosis were evaluated by flow cytometry. It was revealed that NDUFB3 was highly expressed in ovarian cancer (OV), uterine corpus endometrial carcinoma (UCEC), and cervical squamous cell carcinoma (CESC). NDUFB3 expression was associated with multiple immunomodulators in CESC, OV, and UCEC. NDUFB3 was predicted to modulate MAPK signaling pathways in CESC, OV, and UCEC. Knocking down NDUFB3 inhibited the proliferation of CESC, OV, and UCEC cells, increased intracellular ROS production, and induced cell cycle arrest and apoptosis. Wedelolactone was a potential small molecule with a strong ability to bind with the active pocket of NDUFB3, and wedelolactone could kill CESC, OV, and UCEC cells partly via NDUFB3. In conclusion, NDUFB3 may be a potential biomarker and a new target for gynecological tumors, and wedelolactone may exert antitumor activity via targeting NDUFB3.</p>\n </div>","PeriodicalId":143,"journal":{"name":"Chemical Biology & Drug Design","volume":"104 4","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive Analysis of NADH:Ubiquinone Oxidoreductase Subunit B3 in Gynecological Tumors and Identification of Its Natural Inhibitor Wedelolactone\",\"authors\":\"Huiping Li, Yangli Jin, Yanyan Zhang, Xiaohua Xie, Nan Li\",\"doi\":\"10.1111/cbdd.70006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The aim of this study was to explore the role of NADH:ubiquinone oxidoreductase subunit B3 (NDUFB3) in human gynecological malignancies and to screen potential natural compounds targeting it. GEPIA and HPA databases were used to study the expression characteristics of NDUFB3. GO and KEGG enrichment analyses were performed using the R software clusterProfiler package. GSEA for NDUFB3 was performed using the LinkedOmics database. Natural compounds targeting NDUFB3 were screened by virtual screening and molecular docking. After NDUFB3 was depleted or wedelolactone treatment, cell proliferation was detected by CCK-8 assay. The production of reactive oxide species (ROS) in tumor cells was detected by dihydroethidium fluorescent probe. The cell cycle and apoptosis were evaluated by flow cytometry. It was revealed that NDUFB3 was highly expressed in ovarian cancer (OV), uterine corpus endometrial carcinoma (UCEC), and cervical squamous cell carcinoma (CESC). NDUFB3 expression was associated with multiple immunomodulators in CESC, OV, and UCEC. NDUFB3 was predicted to modulate MAPK signaling pathways in CESC, OV, and UCEC. Knocking down NDUFB3 inhibited the proliferation of CESC, OV, and UCEC cells, increased intracellular ROS production, and induced cell cycle arrest and apoptosis. Wedelolactone was a potential small molecule with a strong ability to bind with the active pocket of NDUFB3, and wedelolactone could kill CESC, OV, and UCEC cells partly via NDUFB3. In conclusion, NDUFB3 may be a potential biomarker and a new target for gynecological tumors, and wedelolactone may exert antitumor activity via targeting NDUFB3.</p>\\n </div>\",\"PeriodicalId\":143,\"journal\":{\"name\":\"Chemical Biology & Drug Design\",\"volume\":\"104 4\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Biology & Drug Design\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cbdd.70006\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Biology & Drug Design","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cbdd.70006","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Comprehensive Analysis of NADH:Ubiquinone Oxidoreductase Subunit B3 in Gynecological Tumors and Identification of Its Natural Inhibitor Wedelolactone
The aim of this study was to explore the role of NADH:ubiquinone oxidoreductase subunit B3 (NDUFB3) in human gynecological malignancies and to screen potential natural compounds targeting it. GEPIA and HPA databases were used to study the expression characteristics of NDUFB3. GO and KEGG enrichment analyses were performed using the R software clusterProfiler package. GSEA for NDUFB3 was performed using the LinkedOmics database. Natural compounds targeting NDUFB3 were screened by virtual screening and molecular docking. After NDUFB3 was depleted or wedelolactone treatment, cell proliferation was detected by CCK-8 assay. The production of reactive oxide species (ROS) in tumor cells was detected by dihydroethidium fluorescent probe. The cell cycle and apoptosis were evaluated by flow cytometry. It was revealed that NDUFB3 was highly expressed in ovarian cancer (OV), uterine corpus endometrial carcinoma (UCEC), and cervical squamous cell carcinoma (CESC). NDUFB3 expression was associated with multiple immunomodulators in CESC, OV, and UCEC. NDUFB3 was predicted to modulate MAPK signaling pathways in CESC, OV, and UCEC. Knocking down NDUFB3 inhibited the proliferation of CESC, OV, and UCEC cells, increased intracellular ROS production, and induced cell cycle arrest and apoptosis. Wedelolactone was a potential small molecule with a strong ability to bind with the active pocket of NDUFB3, and wedelolactone could kill CESC, OV, and UCEC cells partly via NDUFB3. In conclusion, NDUFB3 may be a potential biomarker and a new target for gynecological tumors, and wedelolactone may exert antitumor activity via targeting NDUFB3.
期刊介绍:
Chemical Biology & Drug Design is a peer-reviewed scientific journal that is dedicated to the advancement of innovative science, technology and medicine with a focus on the multidisciplinary fields of chemical biology and drug design. It is the aim of Chemical Biology & Drug Design to capture significant research and drug discovery that highlights new concepts, insight and new findings within the scope of chemical biology and drug design.