Lei Ma, Yutang Xie, Kai Zhang, Jing Chen, Yanqin Wang, Liming He, Haoyu Feng, Weiyi Chen, Meng Zhang, Yanru Xue, Xiaogang Wu, Qiang Li
{"title":"基于 PE-PLIF 融合技术的钛和聚醚醚酮组合笼的结构设计和生物力学分析。","authors":"Lei Ma, Yutang Xie, Kai Zhang, Jing Chen, Yanqin Wang, Liming He, Haoyu Feng, Weiyi Chen, Meng Zhang, Yanru Xue, Xiaogang Wu, Qiang Li","doi":"10.1007/s11517-024-03214-9","DOIUrl":null,"url":null,"abstract":"<p><p>In lumbar spinal fusion, the titanium cage tends to cause stress shielding due to their high elastic modulus, which can lead to degenerative lesions in adjacent spinal segments. Furthermore, polyetheretherketone (PEEK) cages have certain material characteristics that do not promote bone ingrowth and fusion stability. In this study, a new cage was designed, and its biomechanical performance in percutaneous endoscopic posterior lumbar interbody fusion (PE-PLIF) was analyzed using the finite element (FE) method. A complete model of the L4-L5 lumbar spine was established, and static and harmonic vibration FE analysis models were developed based on it. The biomechanical properties of titanium, PEEK, and combined cage in PE-PLIF fusion were compared. The strain capacity of the combined fusion increased by 9.5% when compared to the titanium fusion. The surgical model under the combined fusion reduces the L5 endplate stress by 12% in the forward flexion condition and the fusion stress by 17% in the vibration condition compared to the model supported by the titanium fusion, and the differences in screw stress and mobility among the three models are not significant in multiple conditions. Consequently, the combined cage demonstrates a certain reduction in the stress-shielding effect when compared to the titanium cage; it has better fusion effect and provides theoretical support and guidance for the design of the clinical fusion cage.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":"707-720"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural design and biomechanical analysis of a combined titanium and polyetheretherketone cage based on PE-PLIF fusion.\",\"authors\":\"Lei Ma, Yutang Xie, Kai Zhang, Jing Chen, Yanqin Wang, Liming He, Haoyu Feng, Weiyi Chen, Meng Zhang, Yanru Xue, Xiaogang Wu, Qiang Li\",\"doi\":\"10.1007/s11517-024-03214-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In lumbar spinal fusion, the titanium cage tends to cause stress shielding due to their high elastic modulus, which can lead to degenerative lesions in adjacent spinal segments. Furthermore, polyetheretherketone (PEEK) cages have certain material characteristics that do not promote bone ingrowth and fusion stability. In this study, a new cage was designed, and its biomechanical performance in percutaneous endoscopic posterior lumbar interbody fusion (PE-PLIF) was analyzed using the finite element (FE) method. A complete model of the L4-L5 lumbar spine was established, and static and harmonic vibration FE analysis models were developed based on it. The biomechanical properties of titanium, PEEK, and combined cage in PE-PLIF fusion were compared. The strain capacity of the combined fusion increased by 9.5% when compared to the titanium fusion. The surgical model under the combined fusion reduces the L5 endplate stress by 12% in the forward flexion condition and the fusion stress by 17% in the vibration condition compared to the model supported by the titanium fusion, and the differences in screw stress and mobility among the three models are not significant in multiple conditions. Consequently, the combined cage demonstrates a certain reduction in the stress-shielding effect when compared to the titanium cage; it has better fusion effect and provides theoretical support and guidance for the design of the clinical fusion cage.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":\" \",\"pages\":\"707-720\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-024-03214-9\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03214-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Structural design and biomechanical analysis of a combined titanium and polyetheretherketone cage based on PE-PLIF fusion.
In lumbar spinal fusion, the titanium cage tends to cause stress shielding due to their high elastic modulus, which can lead to degenerative lesions in adjacent spinal segments. Furthermore, polyetheretherketone (PEEK) cages have certain material characteristics that do not promote bone ingrowth and fusion stability. In this study, a new cage was designed, and its biomechanical performance in percutaneous endoscopic posterior lumbar interbody fusion (PE-PLIF) was analyzed using the finite element (FE) method. A complete model of the L4-L5 lumbar spine was established, and static and harmonic vibration FE analysis models were developed based on it. The biomechanical properties of titanium, PEEK, and combined cage in PE-PLIF fusion were compared. The strain capacity of the combined fusion increased by 9.5% when compared to the titanium fusion. The surgical model under the combined fusion reduces the L5 endplate stress by 12% in the forward flexion condition and the fusion stress by 17% in the vibration condition compared to the model supported by the titanium fusion, and the differences in screw stress and mobility among the three models are not significant in multiple conditions. Consequently, the combined cage demonstrates a certain reduction in the stress-shielding effect when compared to the titanium cage; it has better fusion effect and provides theoretical support and guidance for the design of the clinical fusion cage.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).