类趋化因子受体 1 基因敲除对脂多糖诱导的小鼠附睾炎的影响

IF 1.9 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Zhonglin Xiao, Jie Chen, Xiujun Fan, Wei Zhao, Chiawei Chu, Jian V Zhang
{"title":"类趋化因子受体 1 基因敲除对脂多糖诱导的小鼠附睾炎的影响","authors":"Zhonglin Xiao, Jie Chen, Xiujun Fan, Wei Zhao, Chiawei Chu, Jian V Zhang","doi":"10.1089/jir.2024.0152","DOIUrl":null,"url":null,"abstract":"<p><p>This comprehensive study delved into the pivotal function of chemokine-like receptor 1 (CMKLR1) in lipopolysaccharide (LPS)-triggered epididymo-orchitis in mice. Upon LPS exposure, wild-type (WT) mice exhibited marked elevations in serum pro-inflammatory markers, including G-CSF, IL-6, and RANTES, along with heightened levels of TNF-α and IL-6 in testicular and epididymal tissues, which accompanied by pronounced structural damage within the testicular tissue and a concurrent decline in serum testosterone, estradiol (E2) levels, and testicular steroid synthetase expression. Remarkably, <i>Cmklr1</i> gene ablation intensified the pro-inflammatory response in the serum (especially IFN-γ), testes, and epididymis of epididymo-orchitis models. Furthermore, <i>Cmklr1</i> deficiency uniquely induced structural alterations within the epididymis, which is absent in the WT model. This genetic manipulation also exacerbated the decline in serum testosterone and E2 levels and testicular steroid synthase activity. While chemerin levels were significantly diminished in WT epididymo-orchitis models, <i>Cmklr1</i> knockout had no discernible effect on chemerin expression in the model. In addition, a noteworthy observation was the elevation of the serum low density lipoprotein/high density lipoprotein (LDL/HDL) ratio in <i>Cmklr1</i>-deficient mice. Collectively, these findings underscore that the lack of chemerin/CMKLR1 signaling axis could potentially worsen the symptoms during LPS-induced epididymo-orchitis, highlighting its potential as a therapeutic target in related pathologies.</p>","PeriodicalId":16261,"journal":{"name":"Journal of Interferon and Cytokine Research","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Impact of Chemokine-Like Receptor 1 Gene Knockout on Lipopolysaccharide-Induced Epididymo-Orchitis in Mice.\",\"authors\":\"Zhonglin Xiao, Jie Chen, Xiujun Fan, Wei Zhao, Chiawei Chu, Jian V Zhang\",\"doi\":\"10.1089/jir.2024.0152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This comprehensive study delved into the pivotal function of chemokine-like receptor 1 (CMKLR1) in lipopolysaccharide (LPS)-triggered epididymo-orchitis in mice. Upon LPS exposure, wild-type (WT) mice exhibited marked elevations in serum pro-inflammatory markers, including G-CSF, IL-6, and RANTES, along with heightened levels of TNF-α and IL-6 in testicular and epididymal tissues, which accompanied by pronounced structural damage within the testicular tissue and a concurrent decline in serum testosterone, estradiol (E2) levels, and testicular steroid synthetase expression. Remarkably, <i>Cmklr1</i> gene ablation intensified the pro-inflammatory response in the serum (especially IFN-γ), testes, and epididymis of epididymo-orchitis models. Furthermore, <i>Cmklr1</i> deficiency uniquely induced structural alterations within the epididymis, which is absent in the WT model. This genetic manipulation also exacerbated the decline in serum testosterone and E2 levels and testicular steroid synthase activity. While chemerin levels were significantly diminished in WT epididymo-orchitis models, <i>Cmklr1</i> knockout had no discernible effect on chemerin expression in the model. In addition, a noteworthy observation was the elevation of the serum low density lipoprotein/high density lipoprotein (LDL/HDL) ratio in <i>Cmklr1</i>-deficient mice. Collectively, these findings underscore that the lack of chemerin/CMKLR1 signaling axis could potentially worsen the symptoms during LPS-induced epididymo-orchitis, highlighting its potential as a therapeutic target in related pathologies.</p>\",\"PeriodicalId\":16261,\"journal\":{\"name\":\"Journal of Interferon and Cytokine Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Interferon and Cytokine Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/jir.2024.0152\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Interferon and Cytokine Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/jir.2024.0152","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

这项综合研究深入探讨了趋化因子样受体1(CMKLR1)在脂多糖(LPS)诱发的小鼠附睾睾丸炎中的关键功能。暴露于 LPS 后,野生型(WT)小鼠的血清促炎标志物(包括 G-CSF、IL-6 和 RANTES)明显升高,睾丸和附睾组织中的 TNF-α 和 IL-6 水平升高,同时睾丸组织结构明显受损,血清睾酮、雌二醇(E2)水平和睾丸类固醇合成酶的表达也同时下降。值得注意的是,Cmklr1 基因消减会加剧附睾-睾丸炎模型血清(尤其是 IFN-γ)、睾丸和附睾中的促炎反应。此外,Cmklr1 缺乏症独特地诱导了附睾结构的改变,而 WT 模型则没有这种改变。这种遗传操作还加剧了血清睾酮和E2水平以及睾丸类固醇合成酶活性的下降。在 WT 附睾-睾丸炎模型中,螯合素水平明显下降,而 Cmklr1 基因敲除对模型中螯合素的表达没有明显影响。此外,值得注意的是,Cmklr1 基因缺陷小鼠的血清低密度脂蛋白/高密度脂蛋白(LDL/HDL)比率升高。总之,这些发现强调了缺乏螯合素/CMKLR1信号轴可能会加重LPS诱导的附睾睾丸炎的症状,突出了其作为相关病症治疗靶点的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Impact of Chemokine-Like Receptor 1 Gene Knockout on Lipopolysaccharide-Induced Epididymo-Orchitis in Mice.

This comprehensive study delved into the pivotal function of chemokine-like receptor 1 (CMKLR1) in lipopolysaccharide (LPS)-triggered epididymo-orchitis in mice. Upon LPS exposure, wild-type (WT) mice exhibited marked elevations in serum pro-inflammatory markers, including G-CSF, IL-6, and RANTES, along with heightened levels of TNF-α and IL-6 in testicular and epididymal tissues, which accompanied by pronounced structural damage within the testicular tissue and a concurrent decline in serum testosterone, estradiol (E2) levels, and testicular steroid synthetase expression. Remarkably, Cmklr1 gene ablation intensified the pro-inflammatory response in the serum (especially IFN-γ), testes, and epididymis of epididymo-orchitis models. Furthermore, Cmklr1 deficiency uniquely induced structural alterations within the epididymis, which is absent in the WT model. This genetic manipulation also exacerbated the decline in serum testosterone and E2 levels and testicular steroid synthase activity. While chemerin levels were significantly diminished in WT epididymo-orchitis models, Cmklr1 knockout had no discernible effect on chemerin expression in the model. In addition, a noteworthy observation was the elevation of the serum low density lipoprotein/high density lipoprotein (LDL/HDL) ratio in Cmklr1-deficient mice. Collectively, these findings underscore that the lack of chemerin/CMKLR1 signaling axis could potentially worsen the symptoms during LPS-induced epididymo-orchitis, highlighting its potential as a therapeutic target in related pathologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
78
审稿时长
2.2 months
期刊介绍: Journal of Interferon & Cytokine Research (JICR) provides the latest groundbreaking research on all aspects of IFNs and cytokines. The Journal delivers current findings on emerging topics in this niche community, including the role of IFNs in the therapy of diseases such as multiple sclerosis, the understanding of the third class of IFNs, and the identification and function of IFN-inducible genes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信