开放手术情境感知系统中的头戴式显示器:最新技术回顾

IF 6.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Mingxiao Tu, Hoijoon Jung, Jinman Kim, Andre Kyme
{"title":"开放手术情境感知系统中的头戴式显示器:最新技术回顾","authors":"Mingxiao Tu, Hoijoon Jung, Jinman Kim, Andre Kyme","doi":"10.1109/JBHI.2024.3485023","DOIUrl":null,"url":null,"abstract":"<p><p>Surgical context-aware systems (SCAS), which leverage real-time data and analysis from the operating room to inform surgical activities, can be enhanced through the integration of head-mounted displays (HMDs). Rather than user-agnostic data derived from conventional, and often static, external sensors, HMD-based SCAS relies on dynamic user-centric sensing of the surgical context. The analyzed context-aware information is then augmented directly into a user's field of view via augmented reality (AR) to directly improve their task and decision-making capability. This stateof-the-art review complements previous reviews by exploring the advancement of HMD-based SCAS, including their development and impact on enhancing situational awareness and surgical outcomes in the operating room. The survey demonstrates that this technology can mitigate risks associated with gaps in surgical expertise, increase procedural efficiency, and improve patient outcomes. We also highlight key limitations still to be addressed by the research community, including improving prediction accuracy, robustly handling data heterogeneity, and reducing system latency.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Head-Mounted Displays in Context-Aware Systems for Open Surgery: A State-of-the-Art Review.\",\"authors\":\"Mingxiao Tu, Hoijoon Jung, Jinman Kim, Andre Kyme\",\"doi\":\"10.1109/JBHI.2024.3485023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Surgical context-aware systems (SCAS), which leverage real-time data and analysis from the operating room to inform surgical activities, can be enhanced through the integration of head-mounted displays (HMDs). Rather than user-agnostic data derived from conventional, and often static, external sensors, HMD-based SCAS relies on dynamic user-centric sensing of the surgical context. The analyzed context-aware information is then augmented directly into a user's field of view via augmented reality (AR) to directly improve their task and decision-making capability. This stateof-the-art review complements previous reviews by exploring the advancement of HMD-based SCAS, including their development and impact on enhancing situational awareness and surgical outcomes in the operating room. The survey demonstrates that this technology can mitigate risks associated with gaps in surgical expertise, increase procedural efficiency, and improve patient outcomes. We also highlight key limitations still to be addressed by the research community, including improving prediction accuracy, robustly handling data heterogeneity, and reducing system latency.</p>\",\"PeriodicalId\":13073,\"journal\":{\"name\":\"IEEE Journal of Biomedical and Health Informatics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Biomedical and Health Informatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/JBHI.2024.3485023\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2024.3485023","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

手术情境感知系统(SCAS)可利用手术室的实时数据和分析为手术活动提供信息,通过集成头戴式显示器(HMD)可增强该系统的功能。基于 HMD 的 SCAS 依赖于以用户为中心对手术环境的动态感知,而不是从传统的(通常是静态的)外部传感器中获取与用户无关的数据。分析后的情境感知信息通过增强现实技术(AR)直接增强到用户的视野中,从而直接提高用户的任务和决策能力。这篇最新综述对之前的综述进行了补充,探讨了基于 HMD 的 SCAS 的发展,包括其发展及其对增强手术室中的态势感知和手术效果的影响。调查表明,这项技术可以降低与手术专业知识差距相关的风险,提高手术效率,改善患者预后。我们还强调了研究界仍需解决的主要局限性,包括提高预测准确性、稳健处理数据异质性和减少系统延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Head-Mounted Displays in Context-Aware Systems for Open Surgery: A State-of-the-Art Review.

Surgical context-aware systems (SCAS), which leverage real-time data and analysis from the operating room to inform surgical activities, can be enhanced through the integration of head-mounted displays (HMDs). Rather than user-agnostic data derived from conventional, and often static, external sensors, HMD-based SCAS relies on dynamic user-centric sensing of the surgical context. The analyzed context-aware information is then augmented directly into a user's field of view via augmented reality (AR) to directly improve their task and decision-making capability. This stateof-the-art review complements previous reviews by exploring the advancement of HMD-based SCAS, including their development and impact on enhancing situational awareness and surgical outcomes in the operating room. The survey demonstrates that this technology can mitigate risks associated with gaps in surgical expertise, increase procedural efficiency, and improve patient outcomes. We also highlight key limitations still to be addressed by the research community, including improving prediction accuracy, robustly handling data heterogeneity, and reducing system latency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Journal of Biomedical and Health Informatics
IEEE Journal of Biomedical and Health Informatics COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
13.60
自引率
6.50%
发文量
1151
期刊介绍: IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信