{"title":"肾细胞癌组织病理学自动分级的核聚焦策略","authors":"Hyunjun Cho, Dongjin Shin, Kwang-Hyun Uhm, Sung-Jea Ko, Yosep Chong, Seung-Won Jung","doi":"10.1109/JBHI.2024.3487004","DOIUrl":null,"url":null,"abstract":"<p><p>The rising incidence of kidney cancer underscores the need for precise and reproducible diagnostic methods. In particular, renal cell carcinoma (RCC), the most prevalent type of kidney cancer, requires accurate nuclear grading for better prognostic prediction. Recent advances in deep learning have facilitated end-to-end diagnostic methods using contextual features in histopathological images. However, most existing methods focus only on image-level features or lack an effective process for aggregating nuclei prediction results, limiting their diagnostic accuracy. In this paper, we introduce a novel framework, Nuclei feature Assisted Patch-level RCC grading (NuAP-RCC), that leverages nuclei-level features for enhanced patch-level RCC grading. Our approach employs a nuclei-level RCC grading network to extract grade-aware features, which serve as node features in a graph. These node features are aggregated using graph neural networks to capture the morphological characteristics and distributions of the nuclei. The aggregated features are then combined with global image-level features extracted by convolutional neural networks, resulting in a final feature for accurate RCC grading. In addition, we present a new dataset for patch-level RCC grading. Experimental results demonstrate the superior accuracy and generalizability of NuAP-RCC across datasets from different medical institutions, achieving a 6.15% improvement in accuracy over the second-best model on the USM-RCC dataset.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Nuclei-Focused Strategy for Automated Histopathology Grading of Renal Cell Carcinoma.\",\"authors\":\"Hyunjun Cho, Dongjin Shin, Kwang-Hyun Uhm, Sung-Jea Ko, Yosep Chong, Seung-Won Jung\",\"doi\":\"10.1109/JBHI.2024.3487004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rising incidence of kidney cancer underscores the need for precise and reproducible diagnostic methods. In particular, renal cell carcinoma (RCC), the most prevalent type of kidney cancer, requires accurate nuclear grading for better prognostic prediction. Recent advances in deep learning have facilitated end-to-end diagnostic methods using contextual features in histopathological images. However, most existing methods focus only on image-level features or lack an effective process for aggregating nuclei prediction results, limiting their diagnostic accuracy. In this paper, we introduce a novel framework, Nuclei feature Assisted Patch-level RCC grading (NuAP-RCC), that leverages nuclei-level features for enhanced patch-level RCC grading. Our approach employs a nuclei-level RCC grading network to extract grade-aware features, which serve as node features in a graph. These node features are aggregated using graph neural networks to capture the morphological characteristics and distributions of the nuclei. The aggregated features are then combined with global image-level features extracted by convolutional neural networks, resulting in a final feature for accurate RCC grading. In addition, we present a new dataset for patch-level RCC grading. Experimental results demonstrate the superior accuracy and generalizability of NuAP-RCC across datasets from different medical institutions, achieving a 6.15% improvement in accuracy over the second-best model on the USM-RCC dataset.</p>\",\"PeriodicalId\":13073,\"journal\":{\"name\":\"IEEE Journal of Biomedical and Health Informatics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Biomedical and Health Informatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/JBHI.2024.3487004\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2024.3487004","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A Nuclei-Focused Strategy for Automated Histopathology Grading of Renal Cell Carcinoma.
The rising incidence of kidney cancer underscores the need for precise and reproducible diagnostic methods. In particular, renal cell carcinoma (RCC), the most prevalent type of kidney cancer, requires accurate nuclear grading for better prognostic prediction. Recent advances in deep learning have facilitated end-to-end diagnostic methods using contextual features in histopathological images. However, most existing methods focus only on image-level features or lack an effective process for aggregating nuclei prediction results, limiting their diagnostic accuracy. In this paper, we introduce a novel framework, Nuclei feature Assisted Patch-level RCC grading (NuAP-RCC), that leverages nuclei-level features for enhanced patch-level RCC grading. Our approach employs a nuclei-level RCC grading network to extract grade-aware features, which serve as node features in a graph. These node features are aggregated using graph neural networks to capture the morphological characteristics and distributions of the nuclei. The aggregated features are then combined with global image-level features extracted by convolutional neural networks, resulting in a final feature for accurate RCC grading. In addition, we present a new dataset for patch-level RCC grading. Experimental results demonstrate the superior accuracy and generalizability of NuAP-RCC across datasets from different medical institutions, achieving a 6.15% improvement in accuracy over the second-best model on the USM-RCC dataset.
期刊介绍:
IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.