Yanghong Guo, Bencong Zhu, Chen Tang, Ruichen Rong, Ying Ma, Guanghua Xiao, Lin Xu, Qiwei Li
{"title":"BayeSMART:多样本空间解析转录组学数据的贝叶斯聚类。","authors":"Yanghong Guo, Bencong Zhu, Chen Tang, Ruichen Rong, Ying Ma, Guanghua Xiao, Lin Xu, Qiwei Li","doi":"10.1093/bib/bbae524","DOIUrl":null,"url":null,"abstract":"<p><p>The field of spatially resolved transcriptomics (SRT) has greatly advanced our understanding of cellular microenvironments by integrating spatial information with molecular data collected from multiple tissue sections or individuals. However, methods for multi-sample spatial clustering are lacking, and existing methods primarily rely on molecular information alone. This paper introduces BayeSMART, a Bayesian statistical method designed to identify spatial domains across multiple samples. BayeSMART leverages artificial intelligence (AI)-reconstructed single-cell level information from the paired histology images of multi-sample SRT datasets while simultaneously considering the spatial context of gene expression. The AI integration enables BayeSMART to effectively interpret the spatial domains. We conducted case studies using four datasets from various tissue types and SRT platforms, and compared BayeSMART with alternative multi-sample spatial clustering approaches and a number of state-of-the-art methods for single-sample SRT analysis, demonstrating that it surpasses existing methods in terms of clustering accuracy, interpretability, and computational efficiency. BayeSMART offers new insights into the spatial organization of cells in multi-sample SRT data.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"25 6","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11514062/pdf/","citationCount":"0","resultStr":"{\"title\":\"BayeSMART: Bayesian clustering of multi-sample spatially resolved transcriptomics data.\",\"authors\":\"Yanghong Guo, Bencong Zhu, Chen Tang, Ruichen Rong, Ying Ma, Guanghua Xiao, Lin Xu, Qiwei Li\",\"doi\":\"10.1093/bib/bbae524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The field of spatially resolved transcriptomics (SRT) has greatly advanced our understanding of cellular microenvironments by integrating spatial information with molecular data collected from multiple tissue sections or individuals. However, methods for multi-sample spatial clustering are lacking, and existing methods primarily rely on molecular information alone. This paper introduces BayeSMART, a Bayesian statistical method designed to identify spatial domains across multiple samples. BayeSMART leverages artificial intelligence (AI)-reconstructed single-cell level information from the paired histology images of multi-sample SRT datasets while simultaneously considering the spatial context of gene expression. The AI integration enables BayeSMART to effectively interpret the spatial domains. We conducted case studies using four datasets from various tissue types and SRT platforms, and compared BayeSMART with alternative multi-sample spatial clustering approaches and a number of state-of-the-art methods for single-sample SRT analysis, demonstrating that it surpasses existing methods in terms of clustering accuracy, interpretability, and computational efficiency. BayeSMART offers new insights into the spatial organization of cells in multi-sample SRT data.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"25 6\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11514062/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbae524\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae524","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
BayeSMART: Bayesian clustering of multi-sample spatially resolved transcriptomics data.
The field of spatially resolved transcriptomics (SRT) has greatly advanced our understanding of cellular microenvironments by integrating spatial information with molecular data collected from multiple tissue sections or individuals. However, methods for multi-sample spatial clustering are lacking, and existing methods primarily rely on molecular information alone. This paper introduces BayeSMART, a Bayesian statistical method designed to identify spatial domains across multiple samples. BayeSMART leverages artificial intelligence (AI)-reconstructed single-cell level information from the paired histology images of multi-sample SRT datasets while simultaneously considering the spatial context of gene expression. The AI integration enables BayeSMART to effectively interpret the spatial domains. We conducted case studies using four datasets from various tissue types and SRT platforms, and compared BayeSMART with alternative multi-sample spatial clustering approaches and a number of state-of-the-art methods for single-sample SRT analysis, demonstrating that it surpasses existing methods in terms of clustering accuracy, interpretability, and computational efficiency. BayeSMART offers new insights into the spatial organization of cells in multi-sample SRT data.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.