通过 WormSynteny 观察 Caenorhabditis 的基因组进化。

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Lilly Bouvarel, Dongyao Liu, Chaogu Zheng
{"title":"通过 WormSynteny 观察 Caenorhabditis 的基因组进化。","authors":"Lilly Bouvarel, Dongyao Liu, Chaogu Zheng","doi":"10.1186/s12864-024-10919-6","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the syntenic relationships among genomes is crucial to elucidate the genomic mechanisms that drive the evolution of species. The nematode Caenorhabditis is a good model for studying genomic evolution due to the well-established biology of Caenorhabditis elegans and the availability of > 50 genomes in the genus. However, effective alignment of more than ten species in Caenorhabditis has not been conducted before, and there is currently no tool to visualize the synteny of more than two species. In this study, we used Progressive Cactus, a recently developed multigenome aligner, to align the genomes of eleven Caenorhabditis species. Through the progressive alignment, we reconstructed nine ancestral genomes, analyzed the mutational types that cause genomic rearrangement during speciation, and found that insertion and duplication are the major driving forces for genome expansion. Dioecious species appear to expand their genomes more than androdioecious species. We then built an online interactive app called WormSynteny to visualize the syntenic relationship among the eleven species. Users can search the alignment dataset using C. elegans query sequences, construct synteny plots at different genomic scales, and use a set of options to control alignment output and plot presentation. We showcased the use of WormSynteny to visualize the syntenic conservation of one-to-one orthologues among species, tandem and dispersed gene duplication in C. elegans, and the evolution of exon and intron structures. Importantly, the integration of orthogroup information with synteny linkage in WormSynteny allows the easy visualization of conserved genomic blocks and disruptive rearrangement. In conclusion, WormSynteny provides immediate access to the syntenic relationships among the most widely used Caenorhabditis species and can facilitate numerous comparative genomics studies. This pilot study with eleven species also serves as a proof-of-concept to a more comprehensive larger-scale analysis using hundreds of nematode genomes, which is expected to reveal mechanisms that drive genomic evolution in the Nematoda phylum. Finally, the WormSynteny software provides a generalizable solution for visualizing the output of Progressive Cactus with interactive graphics, which would be useful for a broad community of genome researchers.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520455/pdf/","citationCount":"0","resultStr":"{\"title\":\"Visualizing genomic evolution in Caenorhabditis through WormSynteny.\",\"authors\":\"Lilly Bouvarel, Dongyao Liu, Chaogu Zheng\",\"doi\":\"10.1186/s12864-024-10919-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding the syntenic relationships among genomes is crucial to elucidate the genomic mechanisms that drive the evolution of species. The nematode Caenorhabditis is a good model for studying genomic evolution due to the well-established biology of Caenorhabditis elegans and the availability of > 50 genomes in the genus. However, effective alignment of more than ten species in Caenorhabditis has not been conducted before, and there is currently no tool to visualize the synteny of more than two species. In this study, we used Progressive Cactus, a recently developed multigenome aligner, to align the genomes of eleven Caenorhabditis species. Through the progressive alignment, we reconstructed nine ancestral genomes, analyzed the mutational types that cause genomic rearrangement during speciation, and found that insertion and duplication are the major driving forces for genome expansion. Dioecious species appear to expand their genomes more than androdioecious species. We then built an online interactive app called WormSynteny to visualize the syntenic relationship among the eleven species. Users can search the alignment dataset using C. elegans query sequences, construct synteny plots at different genomic scales, and use a set of options to control alignment output and plot presentation. We showcased the use of WormSynteny to visualize the syntenic conservation of one-to-one orthologues among species, tandem and dispersed gene duplication in C. elegans, and the evolution of exon and intron structures. Importantly, the integration of orthogroup information with synteny linkage in WormSynteny allows the easy visualization of conserved genomic blocks and disruptive rearrangement. In conclusion, WormSynteny provides immediate access to the syntenic relationships among the most widely used Caenorhabditis species and can facilitate numerous comparative genomics studies. This pilot study with eleven species also serves as a proof-of-concept to a more comprehensive larger-scale analysis using hundreds of nematode genomes, which is expected to reveal mechanisms that drive genomic evolution in the Nematoda phylum. Finally, the WormSynteny software provides a generalizable solution for visualizing the output of Progressive Cactus with interactive graphics, which would be useful for a broad community of genome researchers.</p>\",\"PeriodicalId\":9030,\"journal\":{\"name\":\"BMC Genomics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520455/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12864-024-10919-6\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-024-10919-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

了解基因组之间的同源关系对于阐明驱动物种进化的基因组机制至关重要。由于秀丽隐杆线虫(Caenorhabditis elegans)的生物学特性十分完善,而且该属有超过 50 个基因组,因此秀丽隐杆线虫是研究基因组进化的良好模型。然而,此前还没有对超过 10 个物种的草履虫进行过有效的比对,而且目前也没有任何工具可以直观地显示两个物种以上的同源关系。在这项研究中,我们利用最近开发的多基因组比对工具 Progressive Cactus 对 11 个 Caenorhabditis 物种的基因组进行了比对。通过逐步比对,我们重建了九个祖先基因组,分析了物种演化过程中导致基因组重排的突变类型,发现插入和复制是基因组扩增的主要驱动力。雌雄异体物种的基因组扩张似乎比雌雄同体物种更大。随后,我们建立了一个名为 WormSynteny 的在线互动应用程序,以直观显示 11 个物种之间的同源关系。用户可以使用秀丽隐杆线虫的查询序列搜索比对数据集,在不同的基因组尺度上构建同源关系图,并使用一系列选项来控制比对输出和图示。我们展示了如何利用 WormSynteny 直观地展示物种间一对一直系同源物的同源保守性、秀丽隐杆线虫的串联和分散基因重复以及外显子和内含子结构的进化。重要的是,在 WormSynteny 中整合了正交组信息和同源染色体联系,从而可以轻松地可视化保守基因组块和破坏性重排。总之,WormSynteny 提供了对最广泛使用的 Caenorhabditis 物种之间的同源关系的直接访问,可促进大量比较基因组学研究。这项针对 11 个物种的试验性研究也为使用数百个线虫基因组进行更全面、更大规模的分析提供了概念验证,有望揭示驱动线虫门基因组进化的机制。最后,WormSynteny 软件提供了一个可通用的解决方案,通过交互式图形可视化 Progressive Cactus 的输出结果,这对广大基因组研究人员非常有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visualizing genomic evolution in Caenorhabditis through WormSynteny.

Understanding the syntenic relationships among genomes is crucial to elucidate the genomic mechanisms that drive the evolution of species. The nematode Caenorhabditis is a good model for studying genomic evolution due to the well-established biology of Caenorhabditis elegans and the availability of > 50 genomes in the genus. However, effective alignment of more than ten species in Caenorhabditis has not been conducted before, and there is currently no tool to visualize the synteny of more than two species. In this study, we used Progressive Cactus, a recently developed multigenome aligner, to align the genomes of eleven Caenorhabditis species. Through the progressive alignment, we reconstructed nine ancestral genomes, analyzed the mutational types that cause genomic rearrangement during speciation, and found that insertion and duplication are the major driving forces for genome expansion. Dioecious species appear to expand their genomes more than androdioecious species. We then built an online interactive app called WormSynteny to visualize the syntenic relationship among the eleven species. Users can search the alignment dataset using C. elegans query sequences, construct synteny plots at different genomic scales, and use a set of options to control alignment output and plot presentation. We showcased the use of WormSynteny to visualize the syntenic conservation of one-to-one orthologues among species, tandem and dispersed gene duplication in C. elegans, and the evolution of exon and intron structures. Importantly, the integration of orthogroup information with synteny linkage in WormSynteny allows the easy visualization of conserved genomic blocks and disruptive rearrangement. In conclusion, WormSynteny provides immediate access to the syntenic relationships among the most widely used Caenorhabditis species and can facilitate numerous comparative genomics studies. This pilot study with eleven species also serves as a proof-of-concept to a more comprehensive larger-scale analysis using hundreds of nematode genomes, which is expected to reveal mechanisms that drive genomic evolution in the Nematoda phylum. Finally, the WormSynteny software provides a generalizable solution for visualizing the output of Progressive Cactus with interactive graphics, which would be useful for a broad community of genome researchers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Genomics
BMC Genomics 生物-生物工程与应用微生物
CiteScore
7.40
自引率
4.50%
发文量
769
审稿时长
6.4 months
期刊介绍: BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信