利用官能团化聚合物固有微孔(PIM-G)膜实现高选择性二氧化碳混合物分离

IF 5.1 1区 化学 Q1 POLYMER SCIENCE
Samuel J. Kaser, Pablo Dean, Philippe Jean-Baptiste, Simar Kaur Mattewal, Taigyu Joo, Jing Ying Yeo, Zachary P. Smith
{"title":"利用官能团化聚合物固有微孔(PIM-G)膜实现高选择性二氧化碳混合物分离","authors":"Samuel J. Kaser, Pablo Dean, Philippe Jean-Baptiste, Simar Kaur Mattewal, Taigyu Joo, Jing Ying Yeo, Zachary P. Smith","doi":"10.1021/acs.macromol.4c01434","DOIUrl":null,"url":null,"abstract":"Membrane technology has the potential to replace thermal methods for gas separation, resulting in significant energy savings. However, materials with better combinations of permeability and selectivity are needed to fulfill industrial requirements. In this work, we functionalize a polymer of intrinsic microporosity with a high CO<sub>2</sub> affinity guanidinium moiety to produce a highly CO<sub>2</sub>-permselective ionic polymer (PIM-G). Permeability–selectivity performance is compared under pure- and mixed-gas conditions for CO<sub>2</sub>/CH<sub>4</sub>, CO<sub>2</sub>/N<sub>2</sub>, and CO<sub>2</sub>/O<sub>2</sub> gas pairs. In addition, counteranion identities are modified along the halide series (F<sup>–</sup>, Cl<sup>–</sup>, Br<sup>–</sup>, and I<sup>–</sup>) to optimize separation performance, with larger halides found to improve the CO<sub>2</sub> permselectivity without a commensurate drop in the CO<sub>2</sub> permeability.","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"33 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Selectivity CO2 Mixture Separations by a Guanylated Polymer of Intrinsic Microporosity (PIM-G) Membrane\",\"authors\":\"Samuel J. Kaser, Pablo Dean, Philippe Jean-Baptiste, Simar Kaur Mattewal, Taigyu Joo, Jing Ying Yeo, Zachary P. Smith\",\"doi\":\"10.1021/acs.macromol.4c01434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Membrane technology has the potential to replace thermal methods for gas separation, resulting in significant energy savings. However, materials with better combinations of permeability and selectivity are needed to fulfill industrial requirements. In this work, we functionalize a polymer of intrinsic microporosity with a high CO<sub>2</sub> affinity guanidinium moiety to produce a highly CO<sub>2</sub>-permselective ionic polymer (PIM-G). Permeability–selectivity performance is compared under pure- and mixed-gas conditions for CO<sub>2</sub>/CH<sub>4</sub>, CO<sub>2</sub>/N<sub>2</sub>, and CO<sub>2</sub>/O<sub>2</sub> gas pairs. In addition, counteranion identities are modified along the halide series (F<sup>–</sup>, Cl<sup>–</sup>, Br<sup>–</sup>, and I<sup>–</sup>) to optimize separation performance, with larger halides found to improve the CO<sub>2</sub> permselectivity without a commensurate drop in the CO<sub>2</sub> permeability.\",\"PeriodicalId\":51,\"journal\":{\"name\":\"Macromolecules\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.macromol.4c01434\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.macromol.4c01434","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

膜技术有可能取代热法进行气体分离,从而大大节约能源。然而,要满足工业要求,需要将渗透性和选择性更好地结合在一起的材料。在这项研究中,我们用高二氧化碳亲和力的胍基对具有固有微孔的聚合物进行官能化,从而制备出一种高二氧化碳渗透选择性离子聚合物(PIM-G)。比较了 CO2/CH4、CO2/N2 和 CO2/O2 气体对在纯气和混合气体条件下的渗透选择性。此外,还对卤化物系列(F-、Cl-、Br- 和 I-)的反离子特性进行了修改,以优化分离性能,发现较大的卤化物可提高二氧化碳的渗透选择性,而二氧化碳的渗透性不会相应下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-Selectivity CO2 Mixture Separations by a Guanylated Polymer of Intrinsic Microporosity (PIM-G) Membrane

High-Selectivity CO2 Mixture Separations by a Guanylated Polymer of Intrinsic Microporosity (PIM-G) Membrane
Membrane technology has the potential to replace thermal methods for gas separation, resulting in significant energy savings. However, materials with better combinations of permeability and selectivity are needed to fulfill industrial requirements. In this work, we functionalize a polymer of intrinsic microporosity with a high CO2 affinity guanidinium moiety to produce a highly CO2-permselective ionic polymer (PIM-G). Permeability–selectivity performance is compared under pure- and mixed-gas conditions for CO2/CH4, CO2/N2, and CO2/O2 gas pairs. In addition, counteranion identities are modified along the halide series (F, Cl, Br, and I) to optimize separation performance, with larger halides found to improve the CO2 permselectivity without a commensurate drop in the CO2 permeability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecules
Macromolecules 工程技术-高分子科学
CiteScore
9.30
自引率
16.40%
发文量
942
审稿时长
2 months
期刊介绍: Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信