锚定特征:用于稳定视觉定位的图像特征感知规划器

Q3 Earth and Planetary Sciences
Senmao Li, Chengxi Zhang, Jiaolong Wang, Jin Wu, Lining Tan, Peng Dong
{"title":"锚定特征:用于稳定视觉定位的图像特征感知规划器","authors":"Senmao Li,&nbsp;Chengxi Zhang,&nbsp;Jiaolong Wang,&nbsp;Jin Wu,&nbsp;Lining Tan,&nbsp;Peng Dong","doi":"10.1007/s42401-024-00298-x","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents an image-feature-aware (IFA) planner for quadrotors, which integrates image feature tracking into its path-planning framework. The IFA-planner aims to improve the visual localization performance of quadrotors in multifarious environments where feature points may be sparse or diverse. Unlike traditional methods that decouple visual localization and path planning, the IFA-planner adaptively identifies and tracks feature-rich spatial units, called anchors, along a feasible path. The anchors provide additional feature points to the visual localization module, especially in scenarios with sparse or uneven features, thus enhancing localization robustness. Via clustering-based method, the anchor selection can handle different feature point distributions without manual tuning. Moreover, a detachment prediction mechanism is incorporated to convert the selected anchors into yaw constraints and update them according to the quadrotor’s predicted state. This mechanism ensures the environmental adaptability of the anchors and avoids sudden feature changes. The effectiveness of the IFA-planner is demonstrated in simulation experiments. The source code has been released at https://github.com/ximuzi2023/IFA-planner.</p></div>","PeriodicalId":36309,"journal":{"name":"Aerospace Systems","volume":"7 4","pages":"735 - 745"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anchored to features: an image-feature-aware planner for stable visual localization\",\"authors\":\"Senmao Li,&nbsp;Chengxi Zhang,&nbsp;Jiaolong Wang,&nbsp;Jin Wu,&nbsp;Lining Tan,&nbsp;Peng Dong\",\"doi\":\"10.1007/s42401-024-00298-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents an image-feature-aware (IFA) planner for quadrotors, which integrates image feature tracking into its path-planning framework. The IFA-planner aims to improve the visual localization performance of quadrotors in multifarious environments where feature points may be sparse or diverse. Unlike traditional methods that decouple visual localization and path planning, the IFA-planner adaptively identifies and tracks feature-rich spatial units, called anchors, along a feasible path. The anchors provide additional feature points to the visual localization module, especially in scenarios with sparse or uneven features, thus enhancing localization robustness. Via clustering-based method, the anchor selection can handle different feature point distributions without manual tuning. Moreover, a detachment prediction mechanism is incorporated to convert the selected anchors into yaw constraints and update them according to the quadrotor’s predicted state. This mechanism ensures the environmental adaptability of the anchors and avoids sudden feature changes. The effectiveness of the IFA-planner is demonstrated in simulation experiments. The source code has been released at https://github.com/ximuzi2023/IFA-planner.</p></div>\",\"PeriodicalId\":36309,\"journal\":{\"name\":\"Aerospace Systems\",\"volume\":\"7 4\",\"pages\":\"735 - 745\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42401-024-00298-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Systems","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42401-024-00298-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种用于四旋翼飞行器的图像特征感知(IFA)规划器,它将图像特征跟踪集成到路径规划框架中。IFA 规划器旨在提高四旋翼飞行器在特征点可能稀疏或多样的多种环境中的视觉定位性能。与将视觉定位和路径规划分离开来的传统方法不同,IFA-planner 可沿可行路径自适应地识别和跟踪特征丰富的空间单元(称为锚点)。锚点为视觉定位模块提供了额外的特征点,尤其是在特征稀疏或不均匀的情况下,从而增强了定位的鲁棒性。通过基于聚类的方法,锚点选择可以处理不同的特征点分布,而无需手动调整。此外,还加入了脱离预测机制,将选定的锚点转换为偏航约束,并根据四旋翼飞行器的预测状态进行更新。这种机制确保了锚点对环境的适应性,避免了突然的特征变化。模拟实验证明了 IFA-规划器的有效性。源代码已在 https://github.com/ximuzi2023/IFA-planner 上发布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Anchored to features: an image-feature-aware planner for stable visual localization

Anchored to features: an image-feature-aware planner for stable visual localization

This paper presents an image-feature-aware (IFA) planner for quadrotors, which integrates image feature tracking into its path-planning framework. The IFA-planner aims to improve the visual localization performance of quadrotors in multifarious environments where feature points may be sparse or diverse. Unlike traditional methods that decouple visual localization and path planning, the IFA-planner adaptively identifies and tracks feature-rich spatial units, called anchors, along a feasible path. The anchors provide additional feature points to the visual localization module, especially in scenarios with sparse or uneven features, thus enhancing localization robustness. Via clustering-based method, the anchor selection can handle different feature point distributions without manual tuning. Moreover, a detachment prediction mechanism is incorporated to convert the selected anchors into yaw constraints and update them according to the quadrotor’s predicted state. This mechanism ensures the environmental adaptability of the anchors and avoids sudden feature changes. The effectiveness of the IFA-planner is demonstrated in simulation experiments. The source code has been released at https://github.com/ximuzi2023/IFA-planner.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aerospace Systems
Aerospace Systems Social Sciences-Social Sciences (miscellaneous)
CiteScore
1.80
自引率
0.00%
发文量
53
期刊介绍: Aerospace Systems provides an international, peer-reviewed forum which focuses on system-level research and development regarding aeronautics and astronautics. The journal emphasizes the unique role and increasing importance of informatics on aerospace. It fills a gap in current publishing coverage from outer space vehicles to atmospheric vehicles by highlighting interdisciplinary science, technology and engineering. Potential topics include, but are not limited to: Trans-space vehicle systems design and integration Air vehicle systems Space vehicle systems Near-space vehicle systems Aerospace robotics and unmanned system Communication, navigation and surveillance Aerodynamics and aircraft design Dynamics and control Aerospace propulsion Avionics system Opto-electronic system Air traffic management Earth observation Deep space exploration Bionic micro-aircraft/spacecraft Intelligent sensing and Information fusion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信