具有固定光子状态的贝叶斯量子相位估计

IF 2.2 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Boyu Zhou, Saikat Guha, Christos N. Gagatsos
{"title":"具有固定光子状态的贝叶斯量子相位估计","authors":"Boyu Zhou,&nbsp;Saikat Guha,&nbsp;Christos N. Gagatsos","doi":"10.1007/s11128-024-04576-7","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a two-mode bosonic state with fixed photon number <span>\\(n \\in \\mathbb {N}\\)</span>, whose upper and lower modes pick up a phase <span>\\(\\phi \\)</span> and <span>\\(-\\phi \\)</span>, respectively. We compute the optimal Fock coefficients of the input state, such that the mean square error (MSE) for estimating <span>\\(\\phi \\)</span> is minimized, while the minimum MSE is always attainable by a measurement. Our setting is Bayesian, i.e., we consider <span>\\(\\phi \\)</span> to be a random variable that follows a prior probability distribution function (PDF). Initially, we consider the flat prior PDF and we discuss the well-known fact that the MSE is not an informative tool for estimating a phase when the variance of the prior PDF is large. Therefore, we move on to study truncated versions of the flat prior in both single-shot and adaptive approaches. For our adaptive technique, we consider <span>\\(n=1\\)</span> and truncated prior PDFs. Each subsequent step utilizes as prior PDF the posterior probability of the previous step, and at the same time we update the optimal state and optimal measurement.\n</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"23 11","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11128-024-04576-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Bayesian quantum phase estimation with fixed photon states\",\"authors\":\"Boyu Zhou,&nbsp;Saikat Guha,&nbsp;Christos N. Gagatsos\",\"doi\":\"10.1007/s11128-024-04576-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider a two-mode bosonic state with fixed photon number <span>\\\\(n \\\\in \\\\mathbb {N}\\\\)</span>, whose upper and lower modes pick up a phase <span>\\\\(\\\\phi \\\\)</span> and <span>\\\\(-\\\\phi \\\\)</span>, respectively. We compute the optimal Fock coefficients of the input state, such that the mean square error (MSE) for estimating <span>\\\\(\\\\phi \\\\)</span> is minimized, while the minimum MSE is always attainable by a measurement. Our setting is Bayesian, i.e., we consider <span>\\\\(\\\\phi \\\\)</span> to be a random variable that follows a prior probability distribution function (PDF). Initially, we consider the flat prior PDF and we discuss the well-known fact that the MSE is not an informative tool for estimating a phase when the variance of the prior PDF is large. Therefore, we move on to study truncated versions of the flat prior in both single-shot and adaptive approaches. For our adaptive technique, we consider <span>\\\\(n=1\\\\)</span> and truncated prior PDFs. Each subsequent step utilizes as prior PDF the posterior probability of the previous step, and at the same time we update the optimal state and optimal measurement.\\n</p></div>\",\"PeriodicalId\":746,\"journal\":{\"name\":\"Quantum Information Processing\",\"volume\":\"23 11\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11128-024-04576-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Information Processing\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11128-024-04576-7\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-024-04576-7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑一个具有固定光子数(n in \mathbb {N})的双模玻色态,其上模和下模分别拾取相位(\phi \)和(-\phi \)。我们计算输入状态的最优 Fock 系数,使估计 \(\phi \)的均方误差(MSE)最小,而最小 MSE 总是可以通过测量达到的。我们的设置是贝叶斯式的,即我们认为 \(\phi \) 是一个遵循先验概率分布函数(PDF)的随机变量。最初,我们考虑的是平坦先验 PDF,并讨论了一个众所周知的事实:当先验 PDF 的方差较大时,MSE 并不是估计相位的信息工具。因此,我们将继续研究单次和自适应方法中的平坦先验截断版本。对于我们的自适应技术,我们考虑的是(n=1\)和截断先验 PDF。随后的每一步都使用前一步的后验概率作为先验 PDF,同时更新最优状态和最优测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian quantum phase estimation with fixed photon states

We consider a two-mode bosonic state with fixed photon number \(n \in \mathbb {N}\), whose upper and lower modes pick up a phase \(\phi \) and \(-\phi \), respectively. We compute the optimal Fock coefficients of the input state, such that the mean square error (MSE) for estimating \(\phi \) is minimized, while the minimum MSE is always attainable by a measurement. Our setting is Bayesian, i.e., we consider \(\phi \) to be a random variable that follows a prior probability distribution function (PDF). Initially, we consider the flat prior PDF and we discuss the well-known fact that the MSE is not an informative tool for estimating a phase when the variance of the prior PDF is large. Therefore, we move on to study truncated versions of the flat prior in both single-shot and adaptive approaches. For our adaptive technique, we consider \(n=1\) and truncated prior PDFs. Each subsequent step utilizes as prior PDF the posterior probability of the previous step, and at the same time we update the optimal state and optimal measurement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Information Processing
Quantum Information Processing 物理-物理:数学物理
CiteScore
4.10
自引率
20.00%
发文量
337
审稿时长
4.5 months
期刊介绍: Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信