基于深度学习神经网络的地磁暴预报方法,利用乌拉干渺子霍德观测矩阵的时间序列

IF 0.7 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS
V. G. Getmanov, A. D. Gvishiani, A. A. Soloviev, K. S. Zaitsev, M. E. Dunaev, E. V. Yekhlakov
{"title":"基于深度学习神经网络的地磁暴预报方法,利用乌拉干渺子霍德观测矩阵的时间序列","authors":"V. G. Getmanov,&nbsp;A. D. Gvishiani,&nbsp;A. A. Soloviev,&nbsp;K. S. Zaitsev,&nbsp;M. E. Dunaev,&nbsp;E. V. Yekhlakov","doi":"10.1134/S0016793224600644","DOIUrl":null,"url":null,"abstract":"<p>A method for forecasting geomagnetic storms based on deep learning neural networks using digital time series processing for matrix observations of the URAGAN muon hodoscope and scalar <i>Dst</i>-indices has been developed. A scheme of computational operations and extrapolation formulas for matrix observations are proposed. The a variant of the neural network software module and its parameters are chosen. A decision-making rule is formed to forecast and assess the probabilities of correct and false forecasts of geomagnetic storms. An experimental study of estimates of the probabilistic characteristics and forecasting intervals of geomagnetic storms has confirmed the efficiency of the method. The obtained forecasting results are oriented towards solving a number of solar–terrestrial physics and national economic problems.</p>","PeriodicalId":55597,"journal":{"name":"Geomagnetism and Aeronomy","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Method for Forecasting Geomagnetic Storms Based on Deep Learning Neural Networks Using Time Series of Matrix Observations of the Uragan Muon Hodoscope\",\"authors\":\"V. G. Getmanov,&nbsp;A. D. Gvishiani,&nbsp;A. A. Soloviev,&nbsp;K. S. Zaitsev,&nbsp;M. E. Dunaev,&nbsp;E. V. Yekhlakov\",\"doi\":\"10.1134/S0016793224600644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A method for forecasting geomagnetic storms based on deep learning neural networks using digital time series processing for matrix observations of the URAGAN muon hodoscope and scalar <i>Dst</i>-indices has been developed. A scheme of computational operations and extrapolation formulas for matrix observations are proposed. The a variant of the neural network software module and its parameters are chosen. A decision-making rule is formed to forecast and assess the probabilities of correct and false forecasts of geomagnetic storms. An experimental study of estimates of the probabilistic characteristics and forecasting intervals of geomagnetic storms has confirmed the efficiency of the method. The obtained forecasting results are oriented towards solving a number of solar–terrestrial physics and national economic problems.</p>\",\"PeriodicalId\":55597,\"journal\":{\"name\":\"Geomagnetism and Aeronomy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomagnetism and Aeronomy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0016793224600644\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomagnetism and Aeronomy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S0016793224600644","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

开发了一种基于深度学习神经网络的地磁暴预报方法,利用数字时间序列处理URAGANμ介子示波器的矩阵观测数据和标量Dst指数。提出了矩阵观测的计算操作方案和外推公式。选择了神经网络软件模块的变体及其参数。形成了预测和评估地磁暴正确和错误预测概率的决策规则。对地磁暴概率特征和预报间隔估计的实验研究证实了该方法的效率。所获得的预报结果将用于解决一些日地物理学和国民经济问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Method for Forecasting Geomagnetic Storms Based on Deep Learning Neural Networks Using Time Series of Matrix Observations of the Uragan Muon Hodoscope

A Method for Forecasting Geomagnetic Storms Based on Deep Learning Neural Networks Using Time Series of Matrix Observations of the Uragan Muon Hodoscope

A method for forecasting geomagnetic storms based on deep learning neural networks using digital time series processing for matrix observations of the URAGAN muon hodoscope and scalar Dst-indices has been developed. A scheme of computational operations and extrapolation formulas for matrix observations are proposed. The a variant of the neural network software module and its parameters are chosen. A decision-making rule is formed to forecast and assess the probabilities of correct and false forecasts of geomagnetic storms. An experimental study of estimates of the probabilistic characteristics and forecasting intervals of geomagnetic storms has confirmed the efficiency of the method. The obtained forecasting results are oriented towards solving a number of solar–terrestrial physics and national economic problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geomagnetism and Aeronomy
Geomagnetism and Aeronomy Earth and Planetary Sciences-Space and Planetary Science
CiteScore
1.30
自引率
33.30%
发文量
65
审稿时长
4-8 weeks
期刊介绍: Geomagnetism and Aeronomy is a bimonthly periodical that covers the fields of interplanetary space; geoeffective solar events; the magnetosphere; the ionosphere; the upper and middle atmosphere; the action of solar variability and activity on atmospheric parameters and climate; the main magnetic field and its secular variations, excursion, and inversion; and other related topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信