P. A. Kruchinin, V. V. Malakhov, V. S. Golubkov, A. G. Mayorov
{"title":"利用基于布尼曼-博里斯法的跟踪计算地磁截止刚度","authors":"P. A. Kruchinin, V. V. Malakhov, V. S. Golubkov, A. G. Mayorov","doi":"10.1134/S0016793224600668","DOIUrl":null,"url":null,"abstract":"<p>The article develops a method for determining the geomagnetic cutoff rigidity based on tracing of charged particles in Earth’s magnetic field using the particle-in-cell method implemented in the Buneman–Boris scheme. In order to test the method, the geomagnetic cutoff rigidity in the field of an ideal dipole and in the field given by the IGRF model are calculated. In the first case, the obtained data are compared with analytical values. The calculation accuracy in this case is 3 MV. In the second case, the penumbra pattern is reproduced in different geographical locations, for different periods, and the stability of the method to small perturbations of the initial parameters is investigated. As the main results, the article constructs and analyzes geomagnetic cutoff rigidity maps at low-orbit satellite altitudes for different directions in space as well as their variations from 1900 to 2015.</p>","PeriodicalId":55597,"journal":{"name":"Geomagnetism and Aeronomy","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calculation of Geomagnetic Cutoff Rigidity Using Tracing Based on the Buneman–Boris Method\",\"authors\":\"P. A. Kruchinin, V. V. Malakhov, V. S. Golubkov, A. G. Mayorov\",\"doi\":\"10.1134/S0016793224600668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The article develops a method for determining the geomagnetic cutoff rigidity based on tracing of charged particles in Earth’s magnetic field using the particle-in-cell method implemented in the Buneman–Boris scheme. In order to test the method, the geomagnetic cutoff rigidity in the field of an ideal dipole and in the field given by the IGRF model are calculated. In the first case, the obtained data are compared with analytical values. The calculation accuracy in this case is 3 MV. In the second case, the penumbra pattern is reproduced in different geographical locations, for different periods, and the stability of the method to small perturbations of the initial parameters is investigated. As the main results, the article constructs and analyzes geomagnetic cutoff rigidity maps at low-orbit satellite altitudes for different directions in space as well as their variations from 1900 to 2015.</p>\",\"PeriodicalId\":55597,\"journal\":{\"name\":\"Geomagnetism and Aeronomy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomagnetism and Aeronomy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0016793224600668\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomagnetism and Aeronomy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S0016793224600668","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Calculation of Geomagnetic Cutoff Rigidity Using Tracing Based on the Buneman–Boris Method
The article develops a method for determining the geomagnetic cutoff rigidity based on tracing of charged particles in Earth’s magnetic field using the particle-in-cell method implemented in the Buneman–Boris scheme. In order to test the method, the geomagnetic cutoff rigidity in the field of an ideal dipole and in the field given by the IGRF model are calculated. In the first case, the obtained data are compared with analytical values. The calculation accuracy in this case is 3 MV. In the second case, the penumbra pattern is reproduced in different geographical locations, for different periods, and the stability of the method to small perturbations of the initial parameters is investigated. As the main results, the article constructs and analyzes geomagnetic cutoff rigidity maps at low-orbit satellite altitudes for different directions in space as well as their variations from 1900 to 2015.
期刊介绍:
Geomagnetism and Aeronomy is a bimonthly periodical that covers the fields of interplanetary space; geoeffective solar events; the magnetosphere; the ionosphere; the upper and middle atmosphere; the action of solar variability and activity on atmospheric parameters and climate; the main magnetic field and its secular variations, excursion, and inversion; and other related topics.