论与无分散可积分系统相关的一些线性方程

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
L. V. Bogdanov
{"title":"论与无分散可积分系统相关的一些线性方程","authors":"L. V. Bogdanov","doi":"10.1134/S0040577924100015","DOIUrl":null,"url":null,"abstract":"<p> We use a recently proposed scheme of matrix extension of dispersionless integrable systems in the Abelian case, leading to linear equations related to the original dispersionless system. In the examples considered, these equations can be interpreted in terms of Abelian gauge fields on the geometric background defined by a dispersionless system. They are also connected with the linearization of the original systems. We construct solutions of these linear equations in terms of wave functions of the Lax pair for the dispersionless system, which is represented in terms of some vector fields. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":"221 1","pages":"1589 - 1602"},"PeriodicalIF":1.0000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On some linear equations associated with dispersionless integrable systems\",\"authors\":\"L. V. Bogdanov\",\"doi\":\"10.1134/S0040577924100015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We use a recently proposed scheme of matrix extension of dispersionless integrable systems in the Abelian case, leading to linear equations related to the original dispersionless system. In the examples considered, these equations can be interpreted in terms of Abelian gauge fields on the geometric background defined by a dispersionless system. They are also connected with the linearization of the original systems. We construct solutions of these linear equations in terms of wave functions of the Lax pair for the dispersionless system, which is represented in terms of some vector fields. </p>\",\"PeriodicalId\":797,\"journal\":{\"name\":\"Theoretical and Mathematical Physics\",\"volume\":\"221 1\",\"pages\":\"1589 - 1602\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0040577924100015\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577924100015","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们使用了最近提出的无分散可积分系统在阿贝尔情况下的矩阵扩展方案,从而得到与原始无分散系统相关的线性方程。在所考虑的例子中,这些方程可以用无分散系统定义的几何背景上的阿贝尔规量场来解释。它们还与原始系统的线性化有关。我们用无色散系统的拉克斯对波函数来构建这些线性方程的解,而无色散系统则用一些矢量场来表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On some linear equations associated with dispersionless integrable systems

We use a recently proposed scheme of matrix extension of dispersionless integrable systems in the Abelian case, leading to linear equations related to the original dispersionless system. In the examples considered, these equations can be interpreted in terms of Abelian gauge fields on the geometric background defined by a dispersionless system. They are also connected with the linearization of the original systems. We construct solutions of these linear equations in terms of wave functions of the Lax pair for the dispersionless system, which is represented in terms of some vector fields.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical and Mathematical Physics
Theoretical and Mathematical Physics 物理-物理:数学物理
CiteScore
1.60
自引率
20.00%
发文量
103
审稿时长
4-8 weeks
期刊介绍: Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems. Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信