Joseph Robert Nastasi, Thomas Owen Hay, Melissa A. Fitzgerald, Vassilis Kontogiorgos
{"title":"为智能食品包装应用设计和评估注入澳大利亚本土水果花青素提取物的 pH 值敏感果胶薄膜","authors":"Joseph Robert Nastasi, Thomas Owen Hay, Melissa A. Fitzgerald, Vassilis Kontogiorgos","doi":"10.1007/s11483-024-09900-3","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the incorporation of anthocyanin-rich extracts from Mountain Pepper Berry (MPB) and Queen Garnet Plum (QGP) into pectin-based films to develop pH-sensitive indicators. Using glycerol as an extraction solvent, significant differences in anthocyanin composition were identified: MPB extracts contained a diverse range of anthocyanin species, with a total content of 267.13 ± 5.21 mg L⁻¹, compared to the predominantly cyanidin-based QGP extracts, with 222.14 ± 1.61 mg L⁻¹. Differences in anthocyanin structures were elucidated using UPLC-Q-ToF-MS/MS analysis. FTIR and UV-Vis spectroscopy were used to assess the compatibility of the extracts with pectin and the homogeneity of anthocyanins within the film structure. Mechanical testing revealed that MPB films exhibited superior tensile strength (8.53 ± 0.51 MPa), stiffness (2274 ± 158.64 gmm<sup>− 1</sup>), and energy to failure (141.7 ± 16.23 J m<sup>− 3</sup>) compared to QGP films, which had lower tensile strength (7.74 ± 0.32 MPa), stiffness (1947 ± 125.82 gmm<sup>− 1</sup>), and energy to failure (115 ± 18.81 J m<sup>− 3</sup>). Both film types displayed similar moisture content (MPB: 48.89%, QGP: 48.13%) and water vapour permeability, indicating comparable barrier properties. When exposed to volatile ammonia, QGP films showed a more pronounced colour change, attributed to their anthocyanin profile, with a notable shift from red to brown. This research highlights the potential of glycerol-extracted anthocyanins from Australian native fruits as functional additives in pectin films, offering promising applications for intelligent packaging with enhanced mechanical performance and responsive colour-changing properties.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":564,"journal":{"name":"Food Biophysics","volume":"20 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11483-024-09900-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Design and Evaluation of pH-Sensitive Pectin Films Infused with Anthocyanin-Rich Extracts from Australian Native Fruits for Intelligent Food Packaging Applications\",\"authors\":\"Joseph Robert Nastasi, Thomas Owen Hay, Melissa A. Fitzgerald, Vassilis Kontogiorgos\",\"doi\":\"10.1007/s11483-024-09900-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates the incorporation of anthocyanin-rich extracts from Mountain Pepper Berry (MPB) and Queen Garnet Plum (QGP) into pectin-based films to develop pH-sensitive indicators. Using glycerol as an extraction solvent, significant differences in anthocyanin composition were identified: MPB extracts contained a diverse range of anthocyanin species, with a total content of 267.13 ± 5.21 mg L⁻¹, compared to the predominantly cyanidin-based QGP extracts, with 222.14 ± 1.61 mg L⁻¹. Differences in anthocyanin structures were elucidated using UPLC-Q-ToF-MS/MS analysis. FTIR and UV-Vis spectroscopy were used to assess the compatibility of the extracts with pectin and the homogeneity of anthocyanins within the film structure. Mechanical testing revealed that MPB films exhibited superior tensile strength (8.53 ± 0.51 MPa), stiffness (2274 ± 158.64 gmm<sup>− 1</sup>), and energy to failure (141.7 ± 16.23 J m<sup>− 3</sup>) compared to QGP films, which had lower tensile strength (7.74 ± 0.32 MPa), stiffness (1947 ± 125.82 gmm<sup>− 1</sup>), and energy to failure (115 ± 18.81 J m<sup>− 3</sup>). Both film types displayed similar moisture content (MPB: 48.89%, QGP: 48.13%) and water vapour permeability, indicating comparable barrier properties. When exposed to volatile ammonia, QGP films showed a more pronounced colour change, attributed to their anthocyanin profile, with a notable shift from red to brown. This research highlights the potential of glycerol-extracted anthocyanins from Australian native fruits as functional additives in pectin films, offering promising applications for intelligent packaging with enhanced mechanical performance and responsive colour-changing properties.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":564,\"journal\":{\"name\":\"Food Biophysics\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11483-024-09900-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Biophysics\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11483-024-09900-3\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Biophysics","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s11483-024-09900-3","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Design and Evaluation of pH-Sensitive Pectin Films Infused with Anthocyanin-Rich Extracts from Australian Native Fruits for Intelligent Food Packaging Applications
This study investigates the incorporation of anthocyanin-rich extracts from Mountain Pepper Berry (MPB) and Queen Garnet Plum (QGP) into pectin-based films to develop pH-sensitive indicators. Using glycerol as an extraction solvent, significant differences in anthocyanin composition were identified: MPB extracts contained a diverse range of anthocyanin species, with a total content of 267.13 ± 5.21 mg L⁻¹, compared to the predominantly cyanidin-based QGP extracts, with 222.14 ± 1.61 mg L⁻¹. Differences in anthocyanin structures were elucidated using UPLC-Q-ToF-MS/MS analysis. FTIR and UV-Vis spectroscopy were used to assess the compatibility of the extracts with pectin and the homogeneity of anthocyanins within the film structure. Mechanical testing revealed that MPB films exhibited superior tensile strength (8.53 ± 0.51 MPa), stiffness (2274 ± 158.64 gmm− 1), and energy to failure (141.7 ± 16.23 J m− 3) compared to QGP films, which had lower tensile strength (7.74 ± 0.32 MPa), stiffness (1947 ± 125.82 gmm− 1), and energy to failure (115 ± 18.81 J m− 3). Both film types displayed similar moisture content (MPB: 48.89%, QGP: 48.13%) and water vapour permeability, indicating comparable barrier properties. When exposed to volatile ammonia, QGP films showed a more pronounced colour change, attributed to their anthocyanin profile, with a notable shift from red to brown. This research highlights the potential of glycerol-extracted anthocyanins from Australian native fruits as functional additives in pectin films, offering promising applications for intelligent packaging with enhanced mechanical performance and responsive colour-changing properties.
期刊介绍:
Biophysical studies of foods and agricultural products involve research at the interface of chemistry, biology, and engineering, as well as the new interdisciplinary areas of materials science and nanotechnology. Such studies include but are certainly not limited to research in the following areas: the structure of food molecules, biopolymers, and biomaterials on the molecular, microscopic, and mesoscopic scales; the molecular basis of structure generation and maintenance in specific foods, feeds, food processing operations, and agricultural products; the mechanisms of microbial growth, death and antimicrobial action; structure/function relationships in food and agricultural biopolymers; novel biophysical techniques (spectroscopic, microscopic, thermal, rheological, etc.) for structural and dynamical characterization of food and agricultural materials and products; the properties of amorphous biomaterials and their influence on chemical reaction rate, microbial growth, or sensory properties; and molecular mechanisms of taste and smell.
A hallmark of such research is a dependence on various methods of instrumental analysis that provide information on the molecular level, on various physical and chemical theories used to understand the interrelations among biological molecules, and an attempt to relate macroscopic chemical and physical properties and biological functions to the molecular structure and microscopic organization of the biological material.