从考奇矩阵方法看非谱卡多姆采夫-彼得维亚什维利方程

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
A. Y. Tefera, Da-jun Zhang
{"title":"从考奇矩阵方法看非谱卡多姆采夫-彼得维亚什维利方程","authors":"A. Y. Tefera,&nbsp;Da-jun Zhang","doi":"10.1134/S0040577924100040","DOIUrl":null,"url":null,"abstract":"<p> The Cauchy matrix approach is developed for solving nonisospectral Kadomtsev–Petviashvili equation and the nonisospectral modified Kadomtsev–Petviashvili equation. By means of a Sylvester equation <span>\\( \\boldsymbol{L} \\boldsymbol{M} - \\boldsymbol{M} \\boldsymbol{K} = \\boldsymbol{r} \\boldsymbol{s} ^{\\mathrm T}\\)</span>, a set of scalar master functions <span>\\(\\{S^{(i,j)}\\}\\)</span> are defined. We derive the evolution of scalar functions using the nonisospectral dispersion relations. Some explicit solutions are illustrated together with the analysis of their dynamics. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonisospectral Kadomtsev–Petviashvili equations from the Cauchy matrix approach\",\"authors\":\"A. Y. Tefera,&nbsp;Da-jun Zhang\",\"doi\":\"10.1134/S0040577924100040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> The Cauchy matrix approach is developed for solving nonisospectral Kadomtsev–Petviashvili equation and the nonisospectral modified Kadomtsev–Petviashvili equation. By means of a Sylvester equation <span>\\\\( \\\\boldsymbol{L} \\\\boldsymbol{M} - \\\\boldsymbol{M} \\\\boldsymbol{K} = \\\\boldsymbol{r} \\\\boldsymbol{s} ^{\\\\mathrm T}\\\\)</span>, a set of scalar master functions <span>\\\\(\\\\{S^{(i,j)}\\\\}\\\\)</span> are defined. We derive the evolution of scalar functions using the nonisospectral dispersion relations. Some explicit solutions are illustrated together with the analysis of their dynamics. </p>\",\"PeriodicalId\":797,\"journal\":{\"name\":\"Theoretical and Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0040577924100040\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577924100040","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

为求解非等谱卡多姆采夫-彼得维亚什维利方程和非等谱修正卡多姆采夫-彼得维亚什维利方程开发了考奇矩阵方法。通过西尔维斯特方程(\(\boldsymbol{L})\boldsymbol{M}- \oldsymbol{M}\boldsymbol{K} = \boldsymbol{r}\),一组标量主函数 \(\{S^{(i,j)}\}) 被定义。我们利用非等谱分散关系推导出标量函数的演化过程。图中给出了一些显式解,并对其进行了动力学分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonisospectral Kadomtsev–Petviashvili equations from the Cauchy matrix approach

The Cauchy matrix approach is developed for solving nonisospectral Kadomtsev–Petviashvili equation and the nonisospectral modified Kadomtsev–Petviashvili equation. By means of a Sylvester equation \( \boldsymbol{L} \boldsymbol{M} - \boldsymbol{M} \boldsymbol{K} = \boldsymbol{r} \boldsymbol{s} ^{\mathrm T}\), a set of scalar master functions \(\{S^{(i,j)}\}\) are defined. We derive the evolution of scalar functions using the nonisospectral dispersion relations. Some explicit solutions are illustrated together with the analysis of their dynamics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical and Mathematical Physics
Theoretical and Mathematical Physics 物理-物理:数学物理
CiteScore
1.60
自引率
20.00%
发文量
103
审稿时长
4-8 weeks
期刊介绍: Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems. Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信