{"title":"非微扰制度下的汤川理论:走向约束、精确(beta)函数和保角相位","authors":"Marco Frasca, Anish Ghoshal","doi":"10.1140/epjc/s10052-024-13458-2","DOIUrl":null,"url":null,"abstract":"<div><p>We study possible hints towards confinement in a <span>\\(\\hbox {Z}_2\\)</span>-invariant Yukawa system with massless fermions and a real scalar field in the strongly-coupled regime. Using the tools developed for studying non-perturbative physics via Jacobi elliptical functions, for a given but not unique choice of the vacuum state, we find the exact Green’s function for the scalar sector so that, after integrating out the scalar degrees of freedom, we are able to recover the low-energy limit of the theory that is a fully non-local Nambu–Jona–Lasinio (NJL) model. We provide an analytical result for the renormalization group (RG) running of the self-interaction coupling in the scalar sector in the strongly-coupled regime. In the fermion sector, we provide some clues towards confinement, after deriving the gap equation with the non-local NJL model, a property which is well-known to not emerge in the local limit of this model. We conclude that, for the scalar-Yukawa theory in the non-perturbative domain with our choice of the vacuum state, the fundamental fermions of the theory form bound states and cannot be observed as asymptotic states.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"84 10","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13458-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Yukawa theory in non-perturbative regimes: towards confinement, exact \\\\(\\\\beta \\\\)-function and conformal phase\",\"authors\":\"Marco Frasca, Anish Ghoshal\",\"doi\":\"10.1140/epjc/s10052-024-13458-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study possible hints towards confinement in a <span>\\\\(\\\\hbox {Z}_2\\\\)</span>-invariant Yukawa system with massless fermions and a real scalar field in the strongly-coupled regime. Using the tools developed for studying non-perturbative physics via Jacobi elliptical functions, for a given but not unique choice of the vacuum state, we find the exact Green’s function for the scalar sector so that, after integrating out the scalar degrees of freedom, we are able to recover the low-energy limit of the theory that is a fully non-local Nambu–Jona–Lasinio (NJL) model. We provide an analytical result for the renormalization group (RG) running of the self-interaction coupling in the scalar sector in the strongly-coupled regime. In the fermion sector, we provide some clues towards confinement, after deriving the gap equation with the non-local NJL model, a property which is well-known to not emerge in the local limit of this model. We conclude that, for the scalar-Yukawa theory in the non-perturbative domain with our choice of the vacuum state, the fundamental fermions of the theory form bound states and cannot be observed as asymptotic states.</p></div>\",\"PeriodicalId\":788,\"journal\":{\"name\":\"The European Physical Journal C\",\"volume\":\"84 10\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13458-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal C\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjc/s10052-024-13458-2\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-024-13458-2","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
Yukawa theory in non-perturbative regimes: towards confinement, exact \(\beta \)-function and conformal phase
We study possible hints towards confinement in a \(\hbox {Z}_2\)-invariant Yukawa system with massless fermions and a real scalar field in the strongly-coupled regime. Using the tools developed for studying non-perturbative physics via Jacobi elliptical functions, for a given but not unique choice of the vacuum state, we find the exact Green’s function for the scalar sector so that, after integrating out the scalar degrees of freedom, we are able to recover the low-energy limit of the theory that is a fully non-local Nambu–Jona–Lasinio (NJL) model. We provide an analytical result for the renormalization group (RG) running of the self-interaction coupling in the scalar sector in the strongly-coupled regime. In the fermion sector, we provide some clues towards confinement, after deriving the gap equation with the non-local NJL model, a property which is well-known to not emerge in the local limit of this model. We conclude that, for the scalar-Yukawa theory in the non-perturbative domain with our choice of the vacuum state, the fundamental fermions of the theory form bound states and cannot be observed as asymptotic states.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.