变分量子算法的分层量子架构搜索

Tong Zhao;Bo Chen;Guanting Wu;Liang Zeng
{"title":"变分量子算法的分层量子架构搜索","authors":"Tong Zhao;Bo Chen;Guanting Wu;Liang Zeng","doi":"10.1109/TQE.2024.3454640","DOIUrl":null,"url":null,"abstract":"Designing efficient variational quantum algorithms (VQAs) is crucial for transforming the theoretical advantages of quantum algorithms into practical applications. In this context, quantum architecture search (QAS) has been introduced to automate the search and design of VQAs. However, current mainstream QAS algorithms typically perform both global and local searches simultaneously, which can result in high search space complexity and optimization challenges. In this paper, we propose a hierarchical quantum architecture search framework based on a two-stage search structure. In the first stage, global exploration of the overall quantum circuit structure is performed, while in the second stage, local optimization of quantum gate selection is carried out. We provide a numerical analysis of the theoretical advantages of the proposed framework in reducing the search space. To evaluate practical performance, we conduct experiments on quantum chemistry tasks with different algorithm combinations integrated into the framework. The results demonstrate the effectiveness of the hierarchical search structure in automating quantum circuit design.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10666003","citationCount":"0","resultStr":"{\"title\":\"Hierarchical Quantum Architecture Search for Variational Quantum Algorithms\",\"authors\":\"Tong Zhao;Bo Chen;Guanting Wu;Liang Zeng\",\"doi\":\"10.1109/TQE.2024.3454640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Designing efficient variational quantum algorithms (VQAs) is crucial for transforming the theoretical advantages of quantum algorithms into practical applications. In this context, quantum architecture search (QAS) has been introduced to automate the search and design of VQAs. However, current mainstream QAS algorithms typically perform both global and local searches simultaneously, which can result in high search space complexity and optimization challenges. In this paper, we propose a hierarchical quantum architecture search framework based on a two-stage search structure. In the first stage, global exploration of the overall quantum circuit structure is performed, while in the second stage, local optimization of quantum gate selection is carried out. We provide a numerical analysis of the theoretical advantages of the proposed framework in reducing the search space. To evaluate practical performance, we conduct experiments on quantum chemistry tasks with different algorithm combinations integrated into the framework. The results demonstrate the effectiveness of the hierarchical search structure in automating quantum circuit design.\",\"PeriodicalId\":100644,\"journal\":{\"name\":\"IEEE Transactions on Quantum Engineering\",\"volume\":\"5 \",\"pages\":\"1-10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10666003\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Quantum Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10666003/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Quantum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10666003/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设计高效的变分量子算法(VQAs)对于将量子算法的理论优势转化为实际应用至关重要。在此背景下,量子架构搜索(QAS)被引入到 VQAs 的自动搜索和设计中。然而,目前主流的 QAS 算法通常同时执行全局和局部搜索,这可能会导致较高的搜索空间复杂度和优化挑战。在本文中,我们提出了一种基于两阶段搜索结构的分层量子架构搜索框架。在第一阶段,对整体量子电路结构进行全局探索;在第二阶段,对量子门选择进行局部优化。我们对所提出框架在缩小搜索空间方面的理论优势进行了数值分析。为了评估实际性能,我们对量子化学任务进行了实验,并在框架中集成了不同的算法组合。结果证明了分层搜索结构在量子电路设计自动化方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical Quantum Architecture Search for Variational Quantum Algorithms
Designing efficient variational quantum algorithms (VQAs) is crucial for transforming the theoretical advantages of quantum algorithms into practical applications. In this context, quantum architecture search (QAS) has been introduced to automate the search and design of VQAs. However, current mainstream QAS algorithms typically perform both global and local searches simultaneously, which can result in high search space complexity and optimization challenges. In this paper, we propose a hierarchical quantum architecture search framework based on a two-stage search structure. In the first stage, global exploration of the overall quantum circuit structure is performed, while in the second stage, local optimization of quantum gate selection is carried out. We provide a numerical analysis of the theoretical advantages of the proposed framework in reducing the search space. To evaluate practical performance, we conduct experiments on quantum chemistry tasks with different algorithm combinations integrated into the framework. The results demonstrate the effectiveness of the hierarchical search structure in automating quantum circuit design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信