{"title":"利用合成电压矢量最大限度地降低采用 FCS-MPTC 的 FPOEW 感应电机的磁通和转矩纹波","authors":"Naresh Rayavarapu;Swati Devabhaktuni;Venkata Subba Reddy Chagam Reddy","doi":"10.1109/TLA.2024.10735446","DOIUrl":null,"url":null,"abstract":"This paper introduces a new topology for five-phase OEWIM using Finite Control Set Model Predictive Torque Control (FCS-MPTC). This topology shows the enhancement in the steady-state performance by reducing flux and torque ripples and minimizing the percentage of total harmonic distortion (%THD) in stator current. The FCS-MPTC scheme proposed here employs a shared DC link for both inverters, ensuring zero common mode current, thereby eliminating the need for a large isolation transformer. This topology generates Synthetic voltage vectors (SVV) which result from the vector summation of the individual inverter virtual voltage vectors. Common Mode Voltage (CMV) across the motor windings is nullified using this topology. Another notable aspect of FCS-MPTC is its ability to suppress high harmonic currents through the windings by reducing the average voltage in the non-torque-producing plane (x-y plane). Experimental validation compares the effectiveness of FCS-MPTC against traditional Three-Level Direct Torque Control (TL-DTC) and Five-Level Direct Torque Control (FL-DTC) methodologies","PeriodicalId":55024,"journal":{"name":"IEEE Latin America Transactions","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10735446","citationCount":"0","resultStr":"{\"title\":\"Minimization of Flux and Torque Ripples of FPOEW Induction Motor with FCS-MPTC using Synthetic Voltage Vectors\",\"authors\":\"Naresh Rayavarapu;Swati Devabhaktuni;Venkata Subba Reddy Chagam Reddy\",\"doi\":\"10.1109/TLA.2024.10735446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a new topology for five-phase OEWIM using Finite Control Set Model Predictive Torque Control (FCS-MPTC). This topology shows the enhancement in the steady-state performance by reducing flux and torque ripples and minimizing the percentage of total harmonic distortion (%THD) in stator current. The FCS-MPTC scheme proposed here employs a shared DC link for both inverters, ensuring zero common mode current, thereby eliminating the need for a large isolation transformer. This topology generates Synthetic voltage vectors (SVV) which result from the vector summation of the individual inverter virtual voltage vectors. Common Mode Voltage (CMV) across the motor windings is nullified using this topology. Another notable aspect of FCS-MPTC is its ability to suppress high harmonic currents through the windings by reducing the average voltage in the non-torque-producing plane (x-y plane). Experimental validation compares the effectiveness of FCS-MPTC against traditional Three-Level Direct Torque Control (TL-DTC) and Five-Level Direct Torque Control (FL-DTC) methodologies\",\"PeriodicalId\":55024,\"journal\":{\"name\":\"IEEE Latin America Transactions\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10735446\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Latin America Transactions\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10735446/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Latin America Transactions","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10735446/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Minimization of Flux and Torque Ripples of FPOEW Induction Motor with FCS-MPTC using Synthetic Voltage Vectors
This paper introduces a new topology for five-phase OEWIM using Finite Control Set Model Predictive Torque Control (FCS-MPTC). This topology shows the enhancement in the steady-state performance by reducing flux and torque ripples and minimizing the percentage of total harmonic distortion (%THD) in stator current. The FCS-MPTC scheme proposed here employs a shared DC link for both inverters, ensuring zero common mode current, thereby eliminating the need for a large isolation transformer. This topology generates Synthetic voltage vectors (SVV) which result from the vector summation of the individual inverter virtual voltage vectors. Common Mode Voltage (CMV) across the motor windings is nullified using this topology. Another notable aspect of FCS-MPTC is its ability to suppress high harmonic currents through the windings by reducing the average voltage in the non-torque-producing plane (x-y plane). Experimental validation compares the effectiveness of FCS-MPTC against traditional Three-Level Direct Torque Control (TL-DTC) and Five-Level Direct Torque Control (FL-DTC) methodologies
期刊介绍:
IEEE Latin America Transactions (IEEE LATAM) is an interdisciplinary journal focused on the dissemination of original and quality research papers / review articles in Spanish and Portuguese of emerging topics in three main areas: Computing, Electric Energy and Electronics. Some of the sub-areas of the journal are, but not limited to: Automatic control, communications, instrumentation, artificial intelligence, power and industrial electronics, fault diagnosis and detection, transportation electrification, internet of things, electrical machines, circuits and systems, biomedicine and biomedical / haptic applications, secure communications, robotics, sensors and actuators, computer networks, smart grids, among others.