{"title":"D-AI2-M:利用以数据为中心的人工智能方法预测巴西乙醇产量","authors":"Antonio Mello;Lucas Giusti;Tarsila Tavares;Fernando Alexandrino;Gustavo Guedes;Jorge Soares;Rafael Barbastefano;Fabio Porto;Diego Carvalho;Eduardo Ogasawara","doi":"10.1109/TLA.2024.10735449","DOIUrl":null,"url":null,"abstract":"Ethanol serves as one of Brazils primary biofuels. The country produces two main types of ethanol: i) hydrous ethanol, directly utilized as vehicle fuel, and ii) anhydrous ethanol, presently integrated at a rate of 27% into regular gasoline. In 2023, data from the National Agency of Petroleum, Natural Gas, and Biofuels (ANP) indicated that the total volume of ethanol sold in Brazil (hydrous and anhydrous) was just over 28 million cubic meters (m3), which corresponded to almost 22% of the total volume of liquid fuels sold in the country. These numbers illustrate the importance of this biofuel in Brazil. Just six states account for approximately 90% of Brazilian ethanol production. The logistical challenge arises from production seasonality and the necessity to transport ethanol from production sites to distribution and resale networks. Commonly, such prediction is supported using econometric models, such as ARIMA. Considering the recent advances in Artificial Intelligence, this challenge prompts the research question: Can we enhance monthly hydrous and anhydrous ethanol production prediction for the primary Brazilian-producing states using Artificial Intelligence Models (AIM) How should data be prepared for such an approach This study aims to contribute to logistical planning by employing D-AI2-M - a Data-Centric Artificial Intelligence (DAI) methodology - to aid in selecting AIM for ethanol production time series in the principal Brazilian-producing states. Our quantitative experimental evaluation demonstrates the superior forecasting performance of D-AI2-M in two approaches: i) Local: where different D-AI2-M outperform the benchmark models depending on the specific time series, and ii) Global: where a single D-AI2-M achieves the best mean performance across the complete set of evaluated time series.","PeriodicalId":55024,"journal":{"name":"IEEE Latin America Transactions","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10735449","citationCount":"0","resultStr":"{\"title\":\"D-AI2-M: Ethanol Production Forecasting in Brazil Using Data-Centric Artificial Intelligence Methodology\",\"authors\":\"Antonio Mello;Lucas Giusti;Tarsila Tavares;Fernando Alexandrino;Gustavo Guedes;Jorge Soares;Rafael Barbastefano;Fabio Porto;Diego Carvalho;Eduardo Ogasawara\",\"doi\":\"10.1109/TLA.2024.10735449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ethanol serves as one of Brazils primary biofuels. The country produces two main types of ethanol: i) hydrous ethanol, directly utilized as vehicle fuel, and ii) anhydrous ethanol, presently integrated at a rate of 27% into regular gasoline. In 2023, data from the National Agency of Petroleum, Natural Gas, and Biofuels (ANP) indicated that the total volume of ethanol sold in Brazil (hydrous and anhydrous) was just over 28 million cubic meters (m3), which corresponded to almost 22% of the total volume of liquid fuels sold in the country. These numbers illustrate the importance of this biofuel in Brazil. Just six states account for approximately 90% of Brazilian ethanol production. The logistical challenge arises from production seasonality and the necessity to transport ethanol from production sites to distribution and resale networks. Commonly, such prediction is supported using econometric models, such as ARIMA. Considering the recent advances in Artificial Intelligence, this challenge prompts the research question: Can we enhance monthly hydrous and anhydrous ethanol production prediction for the primary Brazilian-producing states using Artificial Intelligence Models (AIM) How should data be prepared for such an approach This study aims to contribute to logistical planning by employing D-AI2-M - a Data-Centric Artificial Intelligence (DAI) methodology - to aid in selecting AIM for ethanol production time series in the principal Brazilian-producing states. Our quantitative experimental evaluation demonstrates the superior forecasting performance of D-AI2-M in two approaches: i) Local: where different D-AI2-M outperform the benchmark models depending on the specific time series, and ii) Global: where a single D-AI2-M achieves the best mean performance across the complete set of evaluated time series.\",\"PeriodicalId\":55024,\"journal\":{\"name\":\"IEEE Latin America Transactions\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10735449\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Latin America Transactions\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10735449/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Latin America Transactions","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10735449/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
D-AI2-M: Ethanol Production Forecasting in Brazil Using Data-Centric Artificial Intelligence Methodology
Ethanol serves as one of Brazils primary biofuels. The country produces two main types of ethanol: i) hydrous ethanol, directly utilized as vehicle fuel, and ii) anhydrous ethanol, presently integrated at a rate of 27% into regular gasoline. In 2023, data from the National Agency of Petroleum, Natural Gas, and Biofuels (ANP) indicated that the total volume of ethanol sold in Brazil (hydrous and anhydrous) was just over 28 million cubic meters (m3), which corresponded to almost 22% of the total volume of liquid fuels sold in the country. These numbers illustrate the importance of this biofuel in Brazil. Just six states account for approximately 90% of Brazilian ethanol production. The logistical challenge arises from production seasonality and the necessity to transport ethanol from production sites to distribution and resale networks. Commonly, such prediction is supported using econometric models, such as ARIMA. Considering the recent advances in Artificial Intelligence, this challenge prompts the research question: Can we enhance monthly hydrous and anhydrous ethanol production prediction for the primary Brazilian-producing states using Artificial Intelligence Models (AIM) How should data be prepared for such an approach This study aims to contribute to logistical planning by employing D-AI2-M - a Data-Centric Artificial Intelligence (DAI) methodology - to aid in selecting AIM for ethanol production time series in the principal Brazilian-producing states. Our quantitative experimental evaluation demonstrates the superior forecasting performance of D-AI2-M in two approaches: i) Local: where different D-AI2-M outperform the benchmark models depending on the specific time series, and ii) Global: where a single D-AI2-M achieves the best mean performance across the complete set of evaluated time series.
期刊介绍:
IEEE Latin America Transactions (IEEE LATAM) is an interdisciplinary journal focused on the dissemination of original and quality research papers / review articles in Spanish and Portuguese of emerging topics in three main areas: Computing, Electric Energy and Electronics. Some of the sub-areas of the journal are, but not limited to: Automatic control, communications, instrumentation, artificial intelligence, power and industrial electronics, fault diagnosis and detection, transportation electrification, internet of things, electrical machines, circuits and systems, biomedicine and biomedical / haptic applications, secure communications, robotics, sensors and actuators, computer networks, smart grids, among others.