{"title":"基于图形信号采样理论的动态传感器布局","authors":"Saki Nomura;Junya Hara;Hiroshi Higashi;Yuichi Tanaka","doi":"10.1109/OJSP.2024.3466133","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a sensor placement problem where sensors can move within a network over time. Sensor placement problem aims to select \n<inline-formula><tex-math>$K$</tex-math></inline-formula>\n sensor positions from \n<inline-formula><tex-math>$N$</tex-math></inline-formula>\n candidates where \n<inline-formula><tex-math>$K < N$</tex-math></inline-formula>\n. Most existing methods assume that sensor positions are static, i.e., they do not move, however, many mobile sensors like drones, robots, and vehicles can change their positions over time. Moreover, underlying measurement conditions could also be changed, which are difficult to cover with statically placed sensors. We tackle the problem by allowing the sensors to change their positions in their neighbors on the network. We dynamically determine the sensor positions based on graph signal sampling theory such that the non-observed signals on the network can be best recovered from the observations. For signal recovery, the dictionary is learned from a pool of observed signals. It is also used for the sensor position selection. In experiments, we validate the effectiveness of the proposed method via the mean squared error of the reconstructed signals. The proposed dynamic sensor placement outperforms the existing static ones for both synthetic and real data.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"5 ","pages":"1042-1051"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10689379","citationCount":"0","resultStr":"{\"title\":\"Dynamic Sensor Placement Based on Sampling Theory for Graph Signals\",\"authors\":\"Saki Nomura;Junya Hara;Hiroshi Higashi;Yuichi Tanaka\",\"doi\":\"10.1109/OJSP.2024.3466133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider a sensor placement problem where sensors can move within a network over time. Sensor placement problem aims to select \\n<inline-formula><tex-math>$K$</tex-math></inline-formula>\\n sensor positions from \\n<inline-formula><tex-math>$N$</tex-math></inline-formula>\\n candidates where \\n<inline-formula><tex-math>$K < N$</tex-math></inline-formula>\\n. Most existing methods assume that sensor positions are static, i.e., they do not move, however, many mobile sensors like drones, robots, and vehicles can change their positions over time. Moreover, underlying measurement conditions could also be changed, which are difficult to cover with statically placed sensors. We tackle the problem by allowing the sensors to change their positions in their neighbors on the network. We dynamically determine the sensor positions based on graph signal sampling theory such that the non-observed signals on the network can be best recovered from the observations. For signal recovery, the dictionary is learned from a pool of observed signals. It is also used for the sensor position selection. In experiments, we validate the effectiveness of the proposed method via the mean squared error of the reconstructed signals. The proposed dynamic sensor placement outperforms the existing static ones for both synthetic and real data.\",\"PeriodicalId\":73300,\"journal\":{\"name\":\"IEEE open journal of signal processing\",\"volume\":\"5 \",\"pages\":\"1042-1051\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10689379\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of signal processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10689379/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of signal processing","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10689379/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Dynamic Sensor Placement Based on Sampling Theory for Graph Signals
In this paper, we consider a sensor placement problem where sensors can move within a network over time. Sensor placement problem aims to select
$K$
sensor positions from
$N$
candidates where
$K < N$
. Most existing methods assume that sensor positions are static, i.e., they do not move, however, many mobile sensors like drones, robots, and vehicles can change their positions over time. Moreover, underlying measurement conditions could also be changed, which are difficult to cover with statically placed sensors. We tackle the problem by allowing the sensors to change their positions in their neighbors on the network. We dynamically determine the sensor positions based on graph signal sampling theory such that the non-observed signals on the network can be best recovered from the observations. For signal recovery, the dictionary is learned from a pool of observed signals. It is also used for the sensor position selection. In experiments, we validate the effectiveness of the proposed method via the mean squared error of the reconstructed signals. The proposed dynamic sensor placement outperforms the existing static ones for both synthetic and real data.