基于 TerraSAR-X 和 Sentinel-1A 图像的真实二面体和三面体 CR-InSAR 精细化分析

IF 4.7 2区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Hui Liu;Bochen Zhou;Changwei Miao;Shihuan Li;Lei Xu;Ke Zheng;Geshuang Li;Shiji Yang;Mengyuan Zhu
{"title":"基于 TerraSAR-X 和 Sentinel-1A 图像的真实二面体和三面体 CR-InSAR 精细化分析","authors":"Hui Liu;Bochen Zhou;Changwei Miao;Shihuan Li;Lei Xu;Ke Zheng;Geshuang Li;Shiji Yang;Mengyuan Zhu","doi":"10.1109/JSTARS.2024.3472220","DOIUrl":null,"url":null,"abstract":"This study creatively invented a new type of turnbuckle adjustable corner reflector (CR), which greatly enhances the flexible adjustment ability of CR in both vertical and horizontal directions through a unique positive and negative screw structure design, significantly improving the convenience of on-site deployment. Based on the performance of dihedral CR and trihedral CR installed in the South-to-North Water Diversion Channel using back-to-back design on TerraSAR-X and Sentinel-1A images, the performance of different structures of CR in complex environments, especially under heavy precipitation conditions, was deeply analyzed. The experimental results show that the trihedral CR can still maintain stable monitoring efficiency when encountering extreme weather conditions with precipitation exceeding 10 mm. The monitoring effect of traditional dihedral CR drops sharply and is almost ineffective in such environments. At the same time, the combination of theoretical radar cross section (RCS) and measured RCS values confirms the decisive impact of CR geometry and deployment strategy on improving monitoring stability and accuracy. Further precise comparison between CR-InSAR monitoring results and the second-order leveling measurement results shows that the system's average error is controlled within the range of 2–3 mm using trihedral CR. Compared with the results of dihedral CR and InSAR without CR, a significant improvement in accuracy has been achieved. This study provides strong theoretical support and practical guidance for the optimization design and practical application of CR systems, and has important scientific value and application prospects.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"17 ","pages":"18739-18750"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10702605","citationCount":"0","resultStr":"{\"title\":\"Refinement Analysis of Real Dihedral and Trihedral CR-InSAR Based on TerraSAR-X and Sentinel-1A Images\",\"authors\":\"Hui Liu;Bochen Zhou;Changwei Miao;Shihuan Li;Lei Xu;Ke Zheng;Geshuang Li;Shiji Yang;Mengyuan Zhu\",\"doi\":\"10.1109/JSTARS.2024.3472220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study creatively invented a new type of turnbuckle adjustable corner reflector (CR), which greatly enhances the flexible adjustment ability of CR in both vertical and horizontal directions through a unique positive and negative screw structure design, significantly improving the convenience of on-site deployment. Based on the performance of dihedral CR and trihedral CR installed in the South-to-North Water Diversion Channel using back-to-back design on TerraSAR-X and Sentinel-1A images, the performance of different structures of CR in complex environments, especially under heavy precipitation conditions, was deeply analyzed. The experimental results show that the trihedral CR can still maintain stable monitoring efficiency when encountering extreme weather conditions with precipitation exceeding 10 mm. The monitoring effect of traditional dihedral CR drops sharply and is almost ineffective in such environments. At the same time, the combination of theoretical radar cross section (RCS) and measured RCS values confirms the decisive impact of CR geometry and deployment strategy on improving monitoring stability and accuracy. Further precise comparison between CR-InSAR monitoring results and the second-order leveling measurement results shows that the system's average error is controlled within the range of 2–3 mm using trihedral CR. Compared with the results of dihedral CR and InSAR without CR, a significant improvement in accuracy has been achieved. This study provides strong theoretical support and practical guidance for the optimization design and practical application of CR systems, and has important scientific value and application prospects.\",\"PeriodicalId\":13116,\"journal\":{\"name\":\"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing\",\"volume\":\"17 \",\"pages\":\"18739-18750\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10702605\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10702605/\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10702605/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究创造性地发明了一种新型转折式可调角反射器(CR),通过独特的正反螺杆结构设计,大大增强了CR在垂直和水平方向上的灵活调节能力,显著提高了现场布设的便利性。基于 TerraSAR-X 和 Sentinel-1A 图像上采用背靠背设计安装在南水北调渠道上的二面反射镜和三面反射镜的性能,深入分析了不同结构的反射镜在复杂环境,尤其是强降水条件下的性能。实验结果表明,当遇到降水量超过 10 毫米的极端天气条件时,三面体 CR 仍能保持稳定的监测效率。而传统的斜面 CR 在这种环境下监测效果急剧下降,几乎失效。同时,理论雷达截面(RCS)和实测 RCS 值的结合证实了 CR 几何形状和部署策略对提高监测稳定性和准确性的决定性影响。CR-InSAR 监测结果与二阶水准测量结果的进一步精确对比显示,使用三面体 CR 时,系统的平均误差控制在 2-3 毫米范围内。与二面体 CR 和无 CR 的 InSAR 监测结果相比,精度有了显著提高。该研究为 CR 系统的优化设计和实际应用提供了有力的理论支持和实践指导,具有重要的科学价值和应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Refinement Analysis of Real Dihedral and Trihedral CR-InSAR Based on TerraSAR-X and Sentinel-1A Images
This study creatively invented a new type of turnbuckle adjustable corner reflector (CR), which greatly enhances the flexible adjustment ability of CR in both vertical and horizontal directions through a unique positive and negative screw structure design, significantly improving the convenience of on-site deployment. Based on the performance of dihedral CR and trihedral CR installed in the South-to-North Water Diversion Channel using back-to-back design on TerraSAR-X and Sentinel-1A images, the performance of different structures of CR in complex environments, especially under heavy precipitation conditions, was deeply analyzed. The experimental results show that the trihedral CR can still maintain stable monitoring efficiency when encountering extreme weather conditions with precipitation exceeding 10 mm. The monitoring effect of traditional dihedral CR drops sharply and is almost ineffective in such environments. At the same time, the combination of theoretical radar cross section (RCS) and measured RCS values confirms the decisive impact of CR geometry and deployment strategy on improving monitoring stability and accuracy. Further precise comparison between CR-InSAR monitoring results and the second-order leveling measurement results shows that the system's average error is controlled within the range of 2–3 mm using trihedral CR. Compared with the results of dihedral CR and InSAR without CR, a significant improvement in accuracy has been achieved. This study provides strong theoretical support and practical guidance for the optimization design and practical application of CR systems, and has important scientific value and application prospects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.30
自引率
10.90%
发文量
563
审稿时长
4.7 months
期刊介绍: The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信