掺钯 RuO2:具有电池-超级电容器混合特性的前景看好的电极材料

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Surajit Sardar, Rimjhim Yadav, Jai Dev, Surinder P. Singh* and Pallavi Kushwaha*, 
{"title":"掺钯 RuO2:具有电池-超级电容器混合特性的前景看好的电极材料","authors":"Surajit Sardar,&nbsp;Rimjhim Yadav,&nbsp;Jai Dev,&nbsp;Surinder P. Singh* and Pallavi Kushwaha*,&nbsp;","doi":"10.1021/acsaelm.4c0101410.1021/acsaelm.4c01014","DOIUrl":null,"url":null,"abstract":"<p >Supercapacitors have emerged as promising energy storage devices due to their high power density, rapid charging/discharging rates, and long cycle life. Ruthenium dioxide (RuO<sub>2</sub>) is a promising material for supercapacitor electrodes due to its excellent electrical conductivity and pseudocapacitive behavior. Here, we synthesize Ru<sub>1–<i>x</i></sub>Pd<sub><i>x</i></sub>O<sub>2</sub> (<i>x</i> = 0, 0.05, 0.10, and 0.17) by a solid-state route, expecting to alter the electronic structure and specific capacitance with Pd doping. The X-ray diffraction (XRD) analysis suggests that all prepared samples are formed in the desired composition, showing that the crystallite size increases successively with increasing Pd concentration. Cyclic voltammetry (CV) measurements demonstrate that the systematic substitution of 17% Pd in RuO<sub>2</sub> contributes to enhancing specific capacitance by ∼15 times (∼1163 F/g) in comparison to parent RuO<sub>2</sub> (∼79 F/g), indicating its superior charge storage ability. Further, the decay in specific capacitance with increasing scan rate is only 5% (<i>x</i> = 0.17) in comparison to undoped RuO<sub>2</sub>, indicating the higher stability of the electrode. The CV of Ru<sub>1–<i>x</i></sub>Pd<sub><i>x</i></sub>O<sub>2</sub> (<i>x</i> = 0.17) exhibits both Faradaic and capacitive electrochemical processes at the electrode/electrolyte interface, suggesting hybrid battery–supercapacitor characteristics. Ru<sub>1–<i>x</i></sub>Pd<sub><i>x</i></sub>O<sub>2</sub> (<i>x</i> = 0.17) represents a promising electrode material for hybrid battery–supercapacitors, offering synergistic enhancements in specific capacitance and stability.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pd-Doped RuO2: A Promising Electrode Material with Battery–Supercapacitor Hybrid Characteristics\",\"authors\":\"Surajit Sardar,&nbsp;Rimjhim Yadav,&nbsp;Jai Dev,&nbsp;Surinder P. Singh* and Pallavi Kushwaha*,&nbsp;\",\"doi\":\"10.1021/acsaelm.4c0101410.1021/acsaelm.4c01014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Supercapacitors have emerged as promising energy storage devices due to their high power density, rapid charging/discharging rates, and long cycle life. Ruthenium dioxide (RuO<sub>2</sub>) is a promising material for supercapacitor electrodes due to its excellent electrical conductivity and pseudocapacitive behavior. Here, we synthesize Ru<sub>1–<i>x</i></sub>Pd<sub><i>x</i></sub>O<sub>2</sub> (<i>x</i> = 0, 0.05, 0.10, and 0.17) by a solid-state route, expecting to alter the electronic structure and specific capacitance with Pd doping. The X-ray diffraction (XRD) analysis suggests that all prepared samples are formed in the desired composition, showing that the crystallite size increases successively with increasing Pd concentration. Cyclic voltammetry (CV) measurements demonstrate that the systematic substitution of 17% Pd in RuO<sub>2</sub> contributes to enhancing specific capacitance by ∼15 times (∼1163 F/g) in comparison to parent RuO<sub>2</sub> (∼79 F/g), indicating its superior charge storage ability. Further, the decay in specific capacitance with increasing scan rate is only 5% (<i>x</i> = 0.17) in comparison to undoped RuO<sub>2</sub>, indicating the higher stability of the electrode. The CV of Ru<sub>1–<i>x</i></sub>Pd<sub><i>x</i></sub>O<sub>2</sub> (<i>x</i> = 0.17) exhibits both Faradaic and capacitive electrochemical processes at the electrode/electrolyte interface, suggesting hybrid battery–supercapacitor characteristics. Ru<sub>1–<i>x</i></sub>Pd<sub><i>x</i></sub>O<sub>2</sub> (<i>x</i> = 0.17) represents a promising electrode material for hybrid battery–supercapacitors, offering synergistic enhancements in specific capacitance and stability.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaelm.4c01014\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.4c01014","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

超级电容器具有功率密度高、充电/放电速度快、循环寿命长等优点,是一种前景广阔的储能设备。二氧化钌(RuO2)具有优异的导电性和伪电容行为,是一种很有前途的超级电容器电极材料。在此,我们采用固态路线合成了 Ru1-xPdxO2(x = 0、0.05、0.10 和 0.17),期望通过掺杂 Pd 来改变电子结构和比电容。X 射线衍射(XRD)分析表明,所有制备的样品都形成了所需的成分,并显示出结晶尺寸随着钯浓度的增加而逐渐增大。循环伏安法(CV)测量结果表明,与母体 RuO2(∼79 F/g)相比,在 RuO2 中系统地取代 17% 的 Pd 有助于将比电容提高 ∼15 倍(∼1163 F/g),这表明 RuO2 具有卓越的电荷存储能力。此外,与未掺杂的 RuO2 相比,随着扫描速率的增加,比电容的衰减仅为 5%(x = 0.17),这表明该电极具有更高的稳定性。Ru1-xPdxO2 (x = 0.17) 的 CV 在电极/电解质界面上表现出法拉第电化学过程和电容性电化学过程,显示出混合电池-超级电容器特性。Ru1-xPdxO2 (x = 0.17) 是一种很有前途的混合电池-超级电容器电极材料,可协同提高比电容和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Pd-Doped RuO2: A Promising Electrode Material with Battery–Supercapacitor Hybrid Characteristics

Pd-Doped RuO2: A Promising Electrode Material with Battery–Supercapacitor Hybrid Characteristics

Supercapacitors have emerged as promising energy storage devices due to their high power density, rapid charging/discharging rates, and long cycle life. Ruthenium dioxide (RuO2) is a promising material for supercapacitor electrodes due to its excellent electrical conductivity and pseudocapacitive behavior. Here, we synthesize Ru1–xPdxO2 (x = 0, 0.05, 0.10, and 0.17) by a solid-state route, expecting to alter the electronic structure and specific capacitance with Pd doping. The X-ray diffraction (XRD) analysis suggests that all prepared samples are formed in the desired composition, showing that the crystallite size increases successively with increasing Pd concentration. Cyclic voltammetry (CV) measurements demonstrate that the systematic substitution of 17% Pd in RuO2 contributes to enhancing specific capacitance by ∼15 times (∼1163 F/g) in comparison to parent RuO2 (∼79 F/g), indicating its superior charge storage ability. Further, the decay in specific capacitance with increasing scan rate is only 5% (x = 0.17) in comparison to undoped RuO2, indicating the higher stability of the electrode. The CV of Ru1–xPdxO2 (x = 0.17) exhibits both Faradaic and capacitive electrochemical processes at the electrode/electrolyte interface, suggesting hybrid battery–supercapacitor characteristics. Ru1–xPdxO2 (x = 0.17) represents a promising electrode material for hybrid battery–supercapacitors, offering synergistic enhancements in specific capacitance and stability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信