Donglin He, Yibin Jiang, Melanie Guillén-Soler, Zack Geary, Lucia Vizcaíno-Anaya, Daniel Salley, Maria Del Carmen Gimenez-Lopez, De-Liang Long* and Leroy Cronin*,
{"title":"算法驱动的机器人发现多氧代金属盐支架金属有机框架","authors":"Donglin He, Yibin Jiang, Melanie Guillén-Soler, Zack Geary, Lucia Vizcaíno-Anaya, Daniel Salley, Maria Del Carmen Gimenez-Lopez, De-Liang Long* and Leroy Cronin*, ","doi":"10.1021/jacs.4c0955310.1021/jacs.4c09553","DOIUrl":null,"url":null,"abstract":"<p >The experimental exploration of the chemical space of crystalline materials, especially metal–organic frameworks (MOFs), requires multiparameter control of a large set of reactions, which is unavoidably time-consuming and labor-intensive when performed manually. To accelerate the rate of material discovery while maintaining high reproducibility, we developed a machine learning algorithm integrated with a robotic synthesis platform for closed-loop exploration of the chemical space for polyoxometalate-scaffolding metal–organic frameworks (POMOFs). The eXtreme Gradient Boosting (XGBoost) model was optimized by using updating data obtained from the uncertainty feedback experiments and a multiclass classification extension based on the POMOF classification from their chemical constitution. The digital signatures for the robotic synthesis of POMOFs were represented by the universal chemical description language (χDL) to precisely record the synthetic steps and enhance the reproducibility. Nine novel POMOFs including one with mixed ligands derived from individual ligands through the imidization reaction of POM amine derivatives with various aldehydes have been discovered with a good repeatability. In addition, chemical space maps were plotted based on the XGBoost models whose F1 scores are above 0.8. Furthermore, the electrochemical properties of the synthesized POMOFs indicate superior electron transfer compared to the molecular POMs and the direct effect of the ratio of Zn, the type of ligands used, and the topology structures in POMOFs for modulating electron transfer abilities.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"146 42","pages":"28952–28960 28952–28960"},"PeriodicalIF":15.6000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacs.4c09553","citationCount":"0","resultStr":"{\"title\":\"Algorithm-Driven Robotic Discovery of Polyoxometalate-Scaffolding Metal–Organic Frameworks\",\"authors\":\"Donglin He, Yibin Jiang, Melanie Guillén-Soler, Zack Geary, Lucia Vizcaíno-Anaya, Daniel Salley, Maria Del Carmen Gimenez-Lopez, De-Liang Long* and Leroy Cronin*, \",\"doi\":\"10.1021/jacs.4c0955310.1021/jacs.4c09553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The experimental exploration of the chemical space of crystalline materials, especially metal–organic frameworks (MOFs), requires multiparameter control of a large set of reactions, which is unavoidably time-consuming and labor-intensive when performed manually. To accelerate the rate of material discovery while maintaining high reproducibility, we developed a machine learning algorithm integrated with a robotic synthesis platform for closed-loop exploration of the chemical space for polyoxometalate-scaffolding metal–organic frameworks (POMOFs). The eXtreme Gradient Boosting (XGBoost) model was optimized by using updating data obtained from the uncertainty feedback experiments and a multiclass classification extension based on the POMOF classification from their chemical constitution. The digital signatures for the robotic synthesis of POMOFs were represented by the universal chemical description language (χDL) to precisely record the synthetic steps and enhance the reproducibility. Nine novel POMOFs including one with mixed ligands derived from individual ligands through the imidization reaction of POM amine derivatives with various aldehydes have been discovered with a good repeatability. In addition, chemical space maps were plotted based on the XGBoost models whose F1 scores are above 0.8. Furthermore, the electrochemical properties of the synthesized POMOFs indicate superior electron transfer compared to the molecular POMs and the direct effect of the ratio of Zn, the type of ligands used, and the topology structures in POMOFs for modulating electron transfer abilities.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"146 42\",\"pages\":\"28952–28960 28952–28960\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/jacs.4c09553\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacs.4c09553\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.4c09553","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Algorithm-Driven Robotic Discovery of Polyoxometalate-Scaffolding Metal–Organic Frameworks
The experimental exploration of the chemical space of crystalline materials, especially metal–organic frameworks (MOFs), requires multiparameter control of a large set of reactions, which is unavoidably time-consuming and labor-intensive when performed manually. To accelerate the rate of material discovery while maintaining high reproducibility, we developed a machine learning algorithm integrated with a robotic synthesis platform for closed-loop exploration of the chemical space for polyoxometalate-scaffolding metal–organic frameworks (POMOFs). The eXtreme Gradient Boosting (XGBoost) model was optimized by using updating data obtained from the uncertainty feedback experiments and a multiclass classification extension based on the POMOF classification from their chemical constitution. The digital signatures for the robotic synthesis of POMOFs were represented by the universal chemical description language (χDL) to precisely record the synthetic steps and enhance the reproducibility. Nine novel POMOFs including one with mixed ligands derived from individual ligands through the imidization reaction of POM amine derivatives with various aldehydes have been discovered with a good repeatability. In addition, chemical space maps were plotted based on the XGBoost models whose F1 scores are above 0.8. Furthermore, the electrochemical properties of the synthesized POMOFs indicate superior electron transfer compared to the molecular POMs and the direct effect of the ratio of Zn, the type of ligands used, and the topology structures in POMOFs for modulating electron transfer abilities.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.