Yuzhang Chen, Brian Litt, Flavia Vitale, Hajime Takano
{"title":"按需癫痫发作有助于快速筛选癫痫治疗药物","authors":"Yuzhang Chen, Brian Litt, Flavia Vitale, Hajime Takano","doi":"10.1101/2024.08.26.609726","DOIUrl":null,"url":null,"abstract":"<p><p>Animal models of epilepsy are critical in drug development and therapeutic testing, but dominant methods for pharmaceutical evaluation face a tradeoff between higher throughput and etiological relevance. For example, in temporal lobe epilepsy, a type of epilepsy where seizures originate from limbic structures like the hippocampus, the main screening models are either based on acutely induced seizures in wild type, naïve animals or spontaneous seizures in chronically epileptic animals. Both types have their disadvantages - the acute convulsant or kindling induced seizures do not account for the myriad neuropathological changes in the diseased, epileptic brains, and spontaneous behavioral seizures are sparse in the chronically epileptic models, making it time-intensive to sufficiently power experiments. In this study, we took a mechanistic approach to precipitate seizures \"on demand\" in chronically epileptic mice. We briefly synchronized principal cells in the CA1 region of the diseased hippocampus to reliably induce stereotyped on-demand behavioral seizures. These induced seizures resembled naturally occurring spontaneous seizures in the epileptic animals and could be stopped by commonly prescribed anti-seizure medications such as levetiracetam and diazepam. Furthermore, we showed that seizures induced in chronically epileptic animals differed from those in naïve animals, highlighting the importance of evaluating therapeutics in the diseased circuit. Taken together, we envision our model to advance the speed at which both pharmacological and closed loop interventions for temporal lobe epilepsy are evaluated.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11507747/pdf/","citationCount":"0","resultStr":"{\"title\":\"On-Demand Seizures Facilitate Rapid Screening of Therapeutics for Epilepsy.\",\"authors\":\"Yuzhang Chen, Brian Litt, Flavia Vitale, Hajime Takano\",\"doi\":\"10.1101/2024.08.26.609726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Animal models of epilepsy are critical in drug development and therapeutic testing, but dominant methods for pharmaceutical evaluation face a tradeoff between higher throughput and etiological relevance. For example, in temporal lobe epilepsy, a type of epilepsy where seizures originate from limbic structures like the hippocampus, the main screening models are either based on acutely induced seizures in wild type, naïve animals or spontaneous seizures in chronically epileptic animals. Both types have their disadvantages - the acute convulsant or kindling induced seizures do not account for the myriad neuropathological changes in the diseased, epileptic brains, and spontaneous behavioral seizures are sparse in the chronically epileptic models, making it time-intensive to sufficiently power experiments. In this study, we took a mechanistic approach to precipitate seizures \\\"on demand\\\" in chronically epileptic mice. We briefly synchronized principal cells in the CA1 region of the diseased hippocampus to reliably induce stereotyped on-demand behavioral seizures. These induced seizures resembled naturally occurring spontaneous seizures in the epileptic animals and could be stopped by commonly prescribed anti-seizure medications such as levetiracetam and diazepam. Furthermore, we showed that seizures induced in chronically epileptic animals differed from those in naïve animals, highlighting the importance of evaluating therapeutics in the diseased circuit. Taken together, we envision our model to advance the speed at which both pharmacological and closed loop interventions for temporal lobe epilepsy are evaluated.</p>\",\"PeriodicalId\":519960,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11507747/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.08.26.609726\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.26.609726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On-Demand Seizures Facilitate Rapid Screening of Therapeutics for Epilepsy.
Animal models of epilepsy are critical in drug development and therapeutic testing, but dominant methods for pharmaceutical evaluation face a tradeoff between higher throughput and etiological relevance. For example, in temporal lobe epilepsy, a type of epilepsy where seizures originate from limbic structures like the hippocampus, the main screening models are either based on acutely induced seizures in wild type, naïve animals or spontaneous seizures in chronically epileptic animals. Both types have their disadvantages - the acute convulsant or kindling induced seizures do not account for the myriad neuropathological changes in the diseased, epileptic brains, and spontaneous behavioral seizures are sparse in the chronically epileptic models, making it time-intensive to sufficiently power experiments. In this study, we took a mechanistic approach to precipitate seizures "on demand" in chronically epileptic mice. We briefly synchronized principal cells in the CA1 region of the diseased hippocampus to reliably induce stereotyped on-demand behavioral seizures. These induced seizures resembled naturally occurring spontaneous seizures in the epileptic animals and could be stopped by commonly prescribed anti-seizure medications such as levetiracetam and diazepam. Furthermore, we showed that seizures induced in chronically epileptic animals differed from those in naïve animals, highlighting the importance of evaluating therapeutics in the diseased circuit. Taken together, we envision our model to advance the speed at which both pharmacological and closed loop interventions for temporal lobe epilepsy are evaluated.