Yu-Ying Phoebe Hsieh, Ian P O'Keefe, Zeqi Wang, Wanting Sun, Hyojik Yang, Linda M Vu, Robert K Ernst, Ajai A Dandekar, Harmit S Malik
{"title":"一种新型 PhoPQ 强化的可乐定抗性机制损害了铜绿假单胞菌膜的完整性。","authors":"Yu-Ying Phoebe Hsieh, Ian P O'Keefe, Zeqi Wang, Wanting Sun, Hyojik Yang, Linda M Vu, Robert K Ernst, Ajai A Dandekar, Harmit S Malik","doi":"10.1101/2024.10.15.618514","DOIUrl":null,"url":null,"abstract":"<p><p>Increasing bacterial resistance to colistin, a vital last-resort antibiotic, is an urgent challenge. We previously reported that magnesium sequestration by <i>Candida albicans</i> enables <i>Pseudomonas aeruginosa</i> to become colistin-resistant. Here, we show that Mg²⁺ depletion drives <i>P. aeruginosa</i> to evolve greater colistin resistance through genetic changes in lipid A biosynthesis-modification pathways and a putative magnesium transporter. These mutations synergize with the Mg <sup>2+</sup> -sensing PhoPQ two-component signaling system to remodel lipid A structures of the bacterial outer membrane in previously uncharacterized ways. One predominant mutational pathway relies on early mutations in <i>htrB2</i> , a non-essential gene involved in lipid A biosynthesis, which enhances resistance but compromises outer membrane integrity, resulting in fitness costs and increased susceptibility to other antibiotics. A second pathway achieves increased colistin resistance independently of <i>htrB2</i> mutations without compromising membrane integrity. In both cases, reduced binding of colistin to the bacterial membrane underlies resistance. Our findings reveal that Mg <sup>2+</sup> scarcity unleashes two novel trajectories of colistin resistance evolution in <i>P. aeruginosa</i> . (160).</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11507728/pdf/","citationCount":"0","resultStr":"{\"title\":\"Magnesium depletion unleashes two unusual modes of colistin resistance with different fitness costs.\",\"authors\":\"Yu-Ying Phoebe Hsieh, Ian P O'Keefe, Zeqi Wang, Wanting Sun, Hyojik Yang, Linda M Vu, Robert K Ernst, Ajai A Dandekar, Harmit S Malik\",\"doi\":\"10.1101/2024.10.15.618514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Increasing bacterial resistance to colistin, a vital last-resort antibiotic, is an urgent challenge. We previously reported that magnesium sequestration by <i>Candida albicans</i> enables <i>Pseudomonas aeruginosa</i> to become colistin-resistant. Here, we show that Mg²⁺ depletion drives <i>P. aeruginosa</i> to evolve greater colistin resistance through genetic changes in lipid A biosynthesis-modification pathways and a putative magnesium transporter. These mutations synergize with the Mg <sup>2+</sup> -sensing PhoPQ two-component signaling system to remodel lipid A structures of the bacterial outer membrane in previously uncharacterized ways. One predominant mutational pathway relies on early mutations in <i>htrB2</i> , a non-essential gene involved in lipid A biosynthesis, which enhances resistance but compromises outer membrane integrity, resulting in fitness costs and increased susceptibility to other antibiotics. A second pathway achieves increased colistin resistance independently of <i>htrB2</i> mutations without compromising membrane integrity. In both cases, reduced binding of colistin to the bacterial membrane underlies resistance. Our findings reveal that Mg <sup>2+</sup> scarcity unleashes two novel trajectories of colistin resistance evolution in <i>P. aeruginosa</i> . (160).</p>\",\"PeriodicalId\":519960,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11507728/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.10.15.618514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.10.15.618514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
由于不同微生物之间的相互作用会极大地改变它们对抗菌药物的反应和敏感性,因此多微生物群落通常对抗生素治疗难以奏效。然而,人们对这种多微生物环境中抗生素耐药性的演变机制知之甚少。我们以前曾报道,真菌白色念珠菌导致的 Mg 2+ 耗竭可使铜绿假单胞菌对针对细菌膜的最后一种抗生素可乐定产生明显的耐药性。在这里,我们剖析了这种可乐定耐药性增强的遗传和生化基础。我们发现,铜绿假单胞菌细胞可通过三种不同的进化轨迹获得对可乐定的耐药性,这三种进化轨迹涉及参与脂质 A 生物合成的基因突变、依赖于低 Mg 2+ 的脂质 A 修饰以及一种推测的 Mg 2+ 转运体 PA4824。这些突变通过改变细菌外膜上脂质 A 分子的酰基链、羟基化和氨基阿拉伯糖修饰而产生可乐定抗性。在所有情况下,可乐定耐药性的增强最初都依赖于低 Mg 2+ 响应的 PhoPQ 通路,该通路可促进耐药性突变和脂质 A 修饰的进化,而如果不消耗 Mg 2+,则不会发生耐药性突变和脂质 A 修饰。然而,并不是在所有情况下都需要 PhoPQ 途径来维持较高的可乐定抗性。在大多数情况下,与这些新型秋水仙素耐药性相关的遗传和生化变化也会损害细菌膜的完整性,从而导致耐药性的丧失。我们的发现从分子角度揭示了营养竞争如何驱动一种新型抗生素耐药性机制及其随之而来的适应性权衡。
Magnesium depletion unleashes two unusual modes of colistin resistance with different fitness costs.
Increasing bacterial resistance to colistin, a vital last-resort antibiotic, is an urgent challenge. We previously reported that magnesium sequestration by Candida albicans enables Pseudomonas aeruginosa to become colistin-resistant. Here, we show that Mg²⁺ depletion drives P. aeruginosa to evolve greater colistin resistance through genetic changes in lipid A biosynthesis-modification pathways and a putative magnesium transporter. These mutations synergize with the Mg 2+ -sensing PhoPQ two-component signaling system to remodel lipid A structures of the bacterial outer membrane in previously uncharacterized ways. One predominant mutational pathway relies on early mutations in htrB2 , a non-essential gene involved in lipid A biosynthesis, which enhances resistance but compromises outer membrane integrity, resulting in fitness costs and increased susceptibility to other antibiotics. A second pathway achieves increased colistin resistance independently of htrB2 mutations without compromising membrane integrity. In both cases, reduced binding of colistin to the bacterial membrane underlies resistance. Our findings reveal that Mg 2+ scarcity unleashes two novel trajectories of colistin resistance evolution in P. aeruginosa . (160).