Haichao Zhao , Christine Richardson , Ian Marriott , In Hong Yang , Shan Yan
{"title":"APE1 是 ATR/ATM 介导的 DNA 损伤反应的主调节器。","authors":"Haichao Zhao , Christine Richardson , Ian Marriott , In Hong Yang , Shan Yan","doi":"10.1016/j.dnarep.2024.103776","DOIUrl":null,"url":null,"abstract":"<div><div>To maintain genomic integrity, cells have evolved several conserved DNA damage response (DDR) pathways in response to DNA damage and stress conditions. Apurinic/apyrimidinic endonuclease 1 (APE1) exhibits AP endonuclease, 3′-5′ exonuclease, 3′-phosphodiesterase, and 3′-exoribonuclease activities and plays critical roles in the DNA repair and redox regulation of transcription. However, it remains unclear whether and how APE1 is involved in DDR pathways. In this perspective, we first updated our knowledge of APE1's functional domains and its nuclease activities and their specific associated substrates. We then summarized the newly discovered roles and mechanisms of action of APE1 in the global and nucleolar ATR-mediated DDR pathway. While the ATM-mediated DDR is well known to be activated by DNA double-strand breaks and oxidative stress, here we provided new perspectives as to how ATM DDR signaling is activated by indirect single-strand breaks (SSBs) resulting from genotoxic stress and defined SSB structures, and discuss how ATM kinase is directly activated and regulated by its activator, APE1. Together, accumulating body of new evidence supports the notion that APE1 is a master regulator protein of the ATR- and ATM-mediated DDR pathways. These new findings of APE1 in DDR signaling provide previously uncharacterized but critical functions and regulations of APE1 in genome integrity.</div></div>","PeriodicalId":300,"journal":{"name":"DNA Repair","volume":"144 ","pages":"Article 103776"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"APE1 is a master regulator of the ATR-/ATM-mediated DNA damage response\",\"authors\":\"Haichao Zhao , Christine Richardson , Ian Marriott , In Hong Yang , Shan Yan\",\"doi\":\"10.1016/j.dnarep.2024.103776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To maintain genomic integrity, cells have evolved several conserved DNA damage response (DDR) pathways in response to DNA damage and stress conditions. Apurinic/apyrimidinic endonuclease 1 (APE1) exhibits AP endonuclease, 3′-5′ exonuclease, 3′-phosphodiesterase, and 3′-exoribonuclease activities and plays critical roles in the DNA repair and redox regulation of transcription. However, it remains unclear whether and how APE1 is involved in DDR pathways. In this perspective, we first updated our knowledge of APE1's functional domains and its nuclease activities and their specific associated substrates. We then summarized the newly discovered roles and mechanisms of action of APE1 in the global and nucleolar ATR-mediated DDR pathway. While the ATM-mediated DDR is well known to be activated by DNA double-strand breaks and oxidative stress, here we provided new perspectives as to how ATM DDR signaling is activated by indirect single-strand breaks (SSBs) resulting from genotoxic stress and defined SSB structures, and discuss how ATM kinase is directly activated and regulated by its activator, APE1. Together, accumulating body of new evidence supports the notion that APE1 is a master regulator protein of the ATR- and ATM-mediated DDR pathways. These new findings of APE1 in DDR signaling provide previously uncharacterized but critical functions and regulations of APE1 in genome integrity.</div></div>\",\"PeriodicalId\":300,\"journal\":{\"name\":\"DNA Repair\",\"volume\":\"144 \",\"pages\":\"Article 103776\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DNA Repair\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1568786424001526\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA Repair","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568786424001526","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
APE1 is a master regulator of the ATR-/ATM-mediated DNA damage response
To maintain genomic integrity, cells have evolved several conserved DNA damage response (DDR) pathways in response to DNA damage and stress conditions. Apurinic/apyrimidinic endonuclease 1 (APE1) exhibits AP endonuclease, 3′-5′ exonuclease, 3′-phosphodiesterase, and 3′-exoribonuclease activities and plays critical roles in the DNA repair and redox regulation of transcription. However, it remains unclear whether and how APE1 is involved in DDR pathways. In this perspective, we first updated our knowledge of APE1's functional domains and its nuclease activities and their specific associated substrates. We then summarized the newly discovered roles and mechanisms of action of APE1 in the global and nucleolar ATR-mediated DDR pathway. While the ATM-mediated DDR is well known to be activated by DNA double-strand breaks and oxidative stress, here we provided new perspectives as to how ATM DDR signaling is activated by indirect single-strand breaks (SSBs) resulting from genotoxic stress and defined SSB structures, and discuss how ATM kinase is directly activated and regulated by its activator, APE1. Together, accumulating body of new evidence supports the notion that APE1 is a master regulator protein of the ATR- and ATM-mediated DDR pathways. These new findings of APE1 in DDR signaling provide previously uncharacterized but critical functions and regulations of APE1 in genome integrity.
期刊介绍:
DNA Repair provides a forum for the comprehensive coverage of DNA repair and cellular responses to DNA damage. The journal publishes original observations on genetic, cellular, biochemical, structural and molecular aspects of DNA repair, mutagenesis, cell cycle regulation, apoptosis and other biological responses in cells exposed to genomic insult, as well as their relationship to human disease.
DNA Repair publishes full-length research articles, brief reports on research, and reviews. The journal welcomes articles describing databases, methods and new technologies supporting research on DNA repair and responses to DNA damage. Letters to the Editor, hot topics and classics in DNA repair, historical reflections, book reviews and meeting reports also will be considered for publication.