{"title":"肠肝轴:调节肠道微生物群及其代谢产物作为治疗肝缺血再灌注损伤的潜在治疗策略","authors":"Jiahao Wang, Yali Yun, Xunan Dong, Xulong Wang, Haizhong Ma, Qi Fang, Juan Xia, Pengxian Tao, Dongzhi Zhang","doi":"10.24976/Discov.Med.202436189.181","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatic ischemia-reperfusion injury (HIRI) is a major complication reported in various clinical scenarios such as liver transplantation (LTx), hepatectomy, and acute hepatic insult. This condition affects the restoration of hepatic functionalities post-LTx. Contemporary scientific inquiries have highlighted the involvement of intestinal microbiota and their metabolic by-products in the initiation and progression of HIRI. Perturbations in the gut microbiome, instigated by external stressors such as inflammatory processes, ischemic conditions, and reperfusion events, affect the biosynthesis of metabolites such as short-chain fatty acids (SCFAs), bile acids (BAs), and lipopolysaccharides (LPS). SCFAs can exert anti-inflammatory effects, modulate cellular apoptosis, and attenuate oxidative stress, thereby ameliorating hepatic injury. Other studies have shown that the intestinal microbiota confers hepatoprotective effects by modulating the host's immune response and synthesis of cytokines, controlling inflammation, and enhancing liver protection. This review comprehensively describes the mechanisms underlying the association of gut microbiota and its metabolites with hepatic disease and ischemia-reperfusion injury. The findings from recent studies investigating the gut-liver axis are reviewed to identify therapeutic avenues for the prevention and treatment of liver dysfunction and ischemia-reperfusion injury. In-so-doing, novel pathways and perspectives can be exploited to develop therapies for the control of inflammatory hepatic ischemia-reperfusion injury, particularly following liver transplantation or surgical intervention.</p>","PeriodicalId":93980,"journal":{"name":"Discovery medicine","volume":"36 189","pages":"1955-1972"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gut-Liver Axis: Modulating the Gut Microbiota and Its Metabolic Products as a Potential Therapeutic Strategy for the Treatment of Hepatic Ischemia-Reperfusion Injury.\",\"authors\":\"Jiahao Wang, Yali Yun, Xunan Dong, Xulong Wang, Haizhong Ma, Qi Fang, Juan Xia, Pengxian Tao, Dongzhi Zhang\",\"doi\":\"10.24976/Discov.Med.202436189.181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hepatic ischemia-reperfusion injury (HIRI) is a major complication reported in various clinical scenarios such as liver transplantation (LTx), hepatectomy, and acute hepatic insult. This condition affects the restoration of hepatic functionalities post-LTx. Contemporary scientific inquiries have highlighted the involvement of intestinal microbiota and their metabolic by-products in the initiation and progression of HIRI. Perturbations in the gut microbiome, instigated by external stressors such as inflammatory processes, ischemic conditions, and reperfusion events, affect the biosynthesis of metabolites such as short-chain fatty acids (SCFAs), bile acids (BAs), and lipopolysaccharides (LPS). SCFAs can exert anti-inflammatory effects, modulate cellular apoptosis, and attenuate oxidative stress, thereby ameliorating hepatic injury. Other studies have shown that the intestinal microbiota confers hepatoprotective effects by modulating the host's immune response and synthesis of cytokines, controlling inflammation, and enhancing liver protection. This review comprehensively describes the mechanisms underlying the association of gut microbiota and its metabolites with hepatic disease and ischemia-reperfusion injury. The findings from recent studies investigating the gut-liver axis are reviewed to identify therapeutic avenues for the prevention and treatment of liver dysfunction and ischemia-reperfusion injury. In-so-doing, novel pathways and perspectives can be exploited to develop therapies for the control of inflammatory hepatic ischemia-reperfusion injury, particularly following liver transplantation or surgical intervention.</p>\",\"PeriodicalId\":93980,\"journal\":{\"name\":\"Discovery medicine\",\"volume\":\"36 189\",\"pages\":\"1955-1972\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discovery medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24976/Discov.Med.202436189.181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discovery medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24976/Discov.Med.202436189.181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
肝缺血再灌注损伤(HIRI)是肝移植(LTx)、肝切除术和急性肝损伤等各种临床情况下的主要并发症。这种情况会影响肝移植后肝功能的恢复。当代科学研究强调,肠道微生物群及其代谢副产品参与了 HIRI 的发生和发展。炎症过程、缺血条件和再灌注事件等外部应激因素引起的肠道微生物群紊乱会影响短链脂肪酸(SCFA)、胆汁酸(BA)和脂多糖(LPS)等代谢产物的生物合成。SCFAs 可发挥抗炎作用,调节细胞凋亡,减轻氧化应激,从而改善肝损伤。其他研究表明,肠道微生物群通过调节宿主的免疫反应和细胞因子的合成、控制炎症和加强肝脏保护,从而产生保肝作用。本综述全面阐述了肠道微生物群及其代谢产物与肝病和缺血再灌注损伤的关联机制。综述了近期研究肠道-肝脏轴的发现,以确定预防和治疗肝功能异常和缺血再灌注损伤的治疗途径。这样,就可以利用新的途径和观点来开发控制炎症性肝缺血再灌注损伤的疗法,尤其是在肝移植或手术干预之后。
Gut-Liver Axis: Modulating the Gut Microbiota and Its Metabolic Products as a Potential Therapeutic Strategy for the Treatment of Hepatic Ischemia-Reperfusion Injury.
Hepatic ischemia-reperfusion injury (HIRI) is a major complication reported in various clinical scenarios such as liver transplantation (LTx), hepatectomy, and acute hepatic insult. This condition affects the restoration of hepatic functionalities post-LTx. Contemporary scientific inquiries have highlighted the involvement of intestinal microbiota and their metabolic by-products in the initiation and progression of HIRI. Perturbations in the gut microbiome, instigated by external stressors such as inflammatory processes, ischemic conditions, and reperfusion events, affect the biosynthesis of metabolites such as short-chain fatty acids (SCFAs), bile acids (BAs), and lipopolysaccharides (LPS). SCFAs can exert anti-inflammatory effects, modulate cellular apoptosis, and attenuate oxidative stress, thereby ameliorating hepatic injury. Other studies have shown that the intestinal microbiota confers hepatoprotective effects by modulating the host's immune response and synthesis of cytokines, controlling inflammation, and enhancing liver protection. This review comprehensively describes the mechanisms underlying the association of gut microbiota and its metabolites with hepatic disease and ischemia-reperfusion injury. The findings from recent studies investigating the gut-liver axis are reviewed to identify therapeutic avenues for the prevention and treatment of liver dysfunction and ischemia-reperfusion injury. In-so-doing, novel pathways and perspectives can be exploited to develop therapies for the control of inflammatory hepatic ischemia-reperfusion injury, particularly following liver transplantation or surgical intervention.