预测中风后认知轨迹的创新与挑战。

IF 4.1 Q1 CLINICAL NEUROLOGY
Brain communications Pub Date : 2024-10-16 eCollection Date: 2024-01-01 DOI:10.1093/braincomms/fcae364
Nele Demeyere, Margaret J Moore
{"title":"预测中风后认知轨迹的创新与挑战。","authors":"Nele Demeyere, Margaret J Moore","doi":"10.1093/braincomms/fcae364","DOIUrl":null,"url":null,"abstract":"<p><p>This scientific commentary refers to 'Deep learning disconnectomes to accelerate and improve long-term predictions for post-stroke symptoms', by Matsulevits <i>et al</i>. (https://doi.org/10.1093/braincomms/fcae338).</p>","PeriodicalId":93915,"journal":{"name":"Brain communications","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11503942/pdf/","citationCount":"0","resultStr":"{\"title\":\"Innovations and challenges in predicting cognitive trajectories after stroke.\",\"authors\":\"Nele Demeyere, Margaret J Moore\",\"doi\":\"10.1093/braincomms/fcae364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This scientific commentary refers to 'Deep learning disconnectomes to accelerate and improve long-term predictions for post-stroke symptoms', by Matsulevits <i>et al</i>. (https://doi.org/10.1093/braincomms/fcae338).</p>\",\"PeriodicalId\":93915,\"journal\":{\"name\":\"Brain communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11503942/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/braincomms/fcae364\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/braincomms/fcae364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

这篇科学评论提到了 Matsulevits 等人撰写的 "深度学习断开连接,加快并改善对中风后症状的长期预测"(https://doi.org/10.1093/braincomms/fcae338)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Innovations and challenges in predicting cognitive trajectories after stroke.

This scientific commentary refers to 'Deep learning disconnectomes to accelerate and improve long-term predictions for post-stroke symptoms', by Matsulevits et al. (https://doi.org/10.1093/braincomms/fcae338).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.00
自引率
0.00%
发文量
0
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信