{"title":"SCorP:直接从未分类医学图像进行统计信息密集对应预测。","authors":"Krithika Iyer, Jadie Adams, Shireen Y Elhabian","doi":"10.1007/978-3-031-66955-2_10","DOIUrl":null,"url":null,"abstract":"<p><p>Statistical shape modeling (SSM) is a powerful computational framework for quantifying and analyzing the geometric variability of anatomical structures, facilitating advancements in medical research, diagnostics, and treatment planning. Traditional methods for shape modeling from imaging data demand significant manual and computational resources. Additionally, these methods necessitate repeating the entire modeling pipeline to derive shape descriptors (e.g., surface-based point correspondences) for new data. While deep learning approaches have shown promise in streamlining the construction of SSMs on new data, they still rely on traditional techniques to supervise the training of the deep networks. Moreover, the predominant linearity assumption of traditional approaches restricts their efficacy, a limitation also inherited by deep learning models trained using optimized/established correspondences. Consequently, representing complex anatomies becomes challenging. To address these limitations, we introduce SCorP, a novel framework capable of predicting surface-based correspondences directly from unsegmented images. By leveraging the shape prior learned directly from surface meshes in an unsupervised manner, the proposed model eliminates the need for an optimized shape model for training supervision. The strong shape prior acts as a teacher and regularizes the feature learning of the student network to guide it in learning image-based features that are predictive of surface correspondences. The proposed model streamlines the training and inference phases by removing the supervision for the correspondence prediction task while alleviating the linearity assumption. Experiments on the LGE MRI left atrium dataset and Abdomen CT-1K liver datasets demonstrate that the proposed technique enhances the accuracy and robustness of image-driven SSM, providing a compelling alternative to current fully supervised methods.</p>","PeriodicalId":93335,"journal":{"name":"Medical image understanding and analysis : 24th Annual Conference, MIUA 2020, Oxford, UK, July 15-17, 2020, Proceedings. Medical Image Understanding and Analysis (Conference) (24th : 2020 : Online)","volume":"14859 ","pages":"142-157"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495401/pdf/","citationCount":"0","resultStr":"{\"title\":\"SCorP: Statistics-Informed Dense Correspondence Prediction Directly from Unsegmented Medical Images.\",\"authors\":\"Krithika Iyer, Jadie Adams, Shireen Y Elhabian\",\"doi\":\"10.1007/978-3-031-66955-2_10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Statistical shape modeling (SSM) is a powerful computational framework for quantifying and analyzing the geometric variability of anatomical structures, facilitating advancements in medical research, diagnostics, and treatment planning. Traditional methods for shape modeling from imaging data demand significant manual and computational resources. Additionally, these methods necessitate repeating the entire modeling pipeline to derive shape descriptors (e.g., surface-based point correspondences) for new data. While deep learning approaches have shown promise in streamlining the construction of SSMs on new data, they still rely on traditional techniques to supervise the training of the deep networks. Moreover, the predominant linearity assumption of traditional approaches restricts their efficacy, a limitation also inherited by deep learning models trained using optimized/established correspondences. Consequently, representing complex anatomies becomes challenging. To address these limitations, we introduce SCorP, a novel framework capable of predicting surface-based correspondences directly from unsegmented images. By leveraging the shape prior learned directly from surface meshes in an unsupervised manner, the proposed model eliminates the need for an optimized shape model for training supervision. The strong shape prior acts as a teacher and regularizes the feature learning of the student network to guide it in learning image-based features that are predictive of surface correspondences. The proposed model streamlines the training and inference phases by removing the supervision for the correspondence prediction task while alleviating the linearity assumption. Experiments on the LGE MRI left atrium dataset and Abdomen CT-1K liver datasets demonstrate that the proposed technique enhances the accuracy and robustness of image-driven SSM, providing a compelling alternative to current fully supervised methods.</p>\",\"PeriodicalId\":93335,\"journal\":{\"name\":\"Medical image understanding and analysis : 24th Annual Conference, MIUA 2020, Oxford, UK, July 15-17, 2020, Proceedings. Medical Image Understanding and Analysis (Conference) (24th : 2020 : Online)\",\"volume\":\"14859 \",\"pages\":\"142-157\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495401/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical image understanding and analysis : 24th Annual Conference, MIUA 2020, Oxford, UK, July 15-17, 2020, Proceedings. Medical Image Understanding and Analysis (Conference) (24th : 2020 : Online)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-66955-2_10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image understanding and analysis : 24th Annual Conference, MIUA 2020, Oxford, UK, July 15-17, 2020, Proceedings. Medical Image Understanding and Analysis (Conference) (24th : 2020 : Online)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-66955-2_10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
SCorP: Statistics-Informed Dense Correspondence Prediction Directly from Unsegmented Medical Images.
Statistical shape modeling (SSM) is a powerful computational framework for quantifying and analyzing the geometric variability of anatomical structures, facilitating advancements in medical research, diagnostics, and treatment planning. Traditional methods for shape modeling from imaging data demand significant manual and computational resources. Additionally, these methods necessitate repeating the entire modeling pipeline to derive shape descriptors (e.g., surface-based point correspondences) for new data. While deep learning approaches have shown promise in streamlining the construction of SSMs on new data, they still rely on traditional techniques to supervise the training of the deep networks. Moreover, the predominant linearity assumption of traditional approaches restricts their efficacy, a limitation also inherited by deep learning models trained using optimized/established correspondences. Consequently, representing complex anatomies becomes challenging. To address these limitations, we introduce SCorP, a novel framework capable of predicting surface-based correspondences directly from unsegmented images. By leveraging the shape prior learned directly from surface meshes in an unsupervised manner, the proposed model eliminates the need for an optimized shape model for training supervision. The strong shape prior acts as a teacher and regularizes the feature learning of the student network to guide it in learning image-based features that are predictive of surface correspondences. The proposed model streamlines the training and inference phases by removing the supervision for the correspondence prediction task while alleviating the linearity assumption. Experiments on the LGE MRI left atrium dataset and Abdomen CT-1K liver datasets demonstrate that the proposed technique enhances the accuracy and robustness of image-driven SSM, providing a compelling alternative to current fully supervised methods.