Maxim Kuznetsov, Vikram Adhikarla, Enrico Caserta, Xiuli Wang, John E Shively, Flavia Pichiorri, Russell C Rockne
{"title":"数学建模揭示血癌放射性核素靶向治疗的优化策略","authors":"Maxim Kuznetsov, Vikram Adhikarla, Enrico Caserta, Xiuli Wang, John E Shively, Flavia Pichiorri, Russell C Rockne","doi":"10.1158/2767-9764.CRC-24-0306","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Mathematical modeling yields general principles for optimization of TRT in mouse models of multiple myeloma that can be extrapolated to other cancer models and clinical settings.</p>","PeriodicalId":72516,"journal":{"name":"Cancer research communications","volume":" ","pages":"2955-2967"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562018/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mathematical Modeling Unveils Optimization Strategies for Targeted Radionuclide Therapy of Blood Cancers.\",\"authors\":\"Maxim Kuznetsov, Vikram Adhikarla, Enrico Caserta, Xiuli Wang, John E Shively, Flavia Pichiorri, Russell C Rockne\",\"doi\":\"10.1158/2767-9764.CRC-24-0306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Significance: </strong>Mathematical modeling yields general principles for optimization of TRT in mouse models of multiple myeloma that can be extrapolated to other cancer models and clinical settings.</p>\",\"PeriodicalId\":72516,\"journal\":{\"name\":\"Cancer research communications\",\"volume\":\" \",\"pages\":\"2955-2967\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562018/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer research communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1158/2767-9764.CRC-24-0306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer research communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1158/2767-9764.CRC-24-0306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
Mathematical Modeling Unveils Optimization Strategies for Targeted Radionuclide Therapy of Blood Cancers.
Significance: Mathematical modeling yields general principles for optimization of TRT in mouse models of multiple myeloma that can be extrapolated to other cancer models and clinical settings.