Samiha Rouf , Casey Moore , Debabrata Saha , Dan Nguyen , MaryLena Bleile , Robert Timmerman , Hao Peng , Steve Jiang
{"title":"PULSAR效应:通过微分方程揭示联合放射治疗和免疫疗法的潜在协同作用。","authors":"Samiha Rouf , Casey Moore , Debabrata Saha , Dan Nguyen , MaryLena Bleile , Robert Timmerman , Hao Peng , Steve Jiang","doi":"10.1016/j.jtbi.2024.111974","DOIUrl":null,"url":null,"abstract":"<div><div>PULSAR (personalized ultrafractionated stereotactic adaptive radiotherapy) is a form of radiotherapy method where a patient is given a large dose or “pulse” of radiation a couple of weeks apart rather than daily small doses. The tumor response is then monitored to determine when the subsequent pulse should be given. Pre-clinical trials have shown better tumor response in mice that received immunotherapy along with pulses spaced 10 days apart. However, this was not the case when the pulses were 1 or 4 days apart. Therefore, a synergistic effect between immunotherapy and PULSAR is observed when the pulses are spaced out by a certain number of days. In our study, we aimed to develop a mathematical model that can capture the synergistic effect by considering a time-dependent weight function that takes into account the spacing between pulses. We determined feasible parameters by fitting murine tumor volume data of six treatment groups via simulated annealing algorithm. Applying these parameters to the model we simulated 4000 trials with varying sequencing of pulses. These simulations indicated that if pulses were spaced apart by at least 9 days the tumor volume was about 200 <span><math><mrow><mi>m</mi><msup><mrow><mi>m</mi></mrow><mn>3</mn></msup></mrow></math></span> to 250 <span><math><mrow><mi>m</mi><msup><mrow><mi>m</mi></mrow><mn>3</mn></msup></mrow></math></span> smaller when treated with PULSAR combined with immunotherapy. We successfully demonstrate that our model is simple to implement and can generate tumor volume data that is consistent with the pre-clinical trial data. Our model has the potential to aid in the development of clinical trials of PULSAR therapy.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PULSAR Effect: Revealing potential synergies in combined radiation therapy and immunotherapy via differential equations\",\"authors\":\"Samiha Rouf , Casey Moore , Debabrata Saha , Dan Nguyen , MaryLena Bleile , Robert Timmerman , Hao Peng , Steve Jiang\",\"doi\":\"10.1016/j.jtbi.2024.111974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>PULSAR (personalized ultrafractionated stereotactic adaptive radiotherapy) is a form of radiotherapy method where a patient is given a large dose or “pulse” of radiation a couple of weeks apart rather than daily small doses. The tumor response is then monitored to determine when the subsequent pulse should be given. Pre-clinical trials have shown better tumor response in mice that received immunotherapy along with pulses spaced 10 days apart. However, this was not the case when the pulses were 1 or 4 days apart. Therefore, a synergistic effect between immunotherapy and PULSAR is observed when the pulses are spaced out by a certain number of days. In our study, we aimed to develop a mathematical model that can capture the synergistic effect by considering a time-dependent weight function that takes into account the spacing between pulses. We determined feasible parameters by fitting murine tumor volume data of six treatment groups via simulated annealing algorithm. Applying these parameters to the model we simulated 4000 trials with varying sequencing of pulses. These simulations indicated that if pulses were spaced apart by at least 9 days the tumor volume was about 200 <span><math><mrow><mi>m</mi><msup><mrow><mi>m</mi></mrow><mn>3</mn></msup></mrow></math></span> to 250 <span><math><mrow><mi>m</mi><msup><mrow><mi>m</mi></mrow><mn>3</mn></msup></mrow></math></span> smaller when treated with PULSAR combined with immunotherapy. We successfully demonstrate that our model is simple to implement and can generate tumor volume data that is consistent with the pre-clinical trial data. Our model has the potential to aid in the development of clinical trials of PULSAR therapy.</div></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022519324002595\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022519324002595","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
PULSAR Effect: Revealing potential synergies in combined radiation therapy and immunotherapy via differential equations
PULSAR (personalized ultrafractionated stereotactic adaptive radiotherapy) is a form of radiotherapy method where a patient is given a large dose or “pulse” of radiation a couple of weeks apart rather than daily small doses. The tumor response is then monitored to determine when the subsequent pulse should be given. Pre-clinical trials have shown better tumor response in mice that received immunotherapy along with pulses spaced 10 days apart. However, this was not the case when the pulses were 1 or 4 days apart. Therefore, a synergistic effect between immunotherapy and PULSAR is observed when the pulses are spaced out by a certain number of days. In our study, we aimed to develop a mathematical model that can capture the synergistic effect by considering a time-dependent weight function that takes into account the spacing between pulses. We determined feasible parameters by fitting murine tumor volume data of six treatment groups via simulated annealing algorithm. Applying these parameters to the model we simulated 4000 trials with varying sequencing of pulses. These simulations indicated that if pulses were spaced apart by at least 9 days the tumor volume was about 200 to 250 smaller when treated with PULSAR combined with immunotherapy. We successfully demonstrate that our model is simple to implement and can generate tumor volume data that is consistent with the pre-clinical trial data. Our model has the potential to aid in the development of clinical trials of PULSAR therapy.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.