Samiha Rouf , Casey Moore , Debabrata Saha , Dan Nguyen , MaryLena Bleile , Robert Timmerman , Hao Peng , Steve Jiang
{"title":"PULSAR效应:通过微分方程揭示联合放射治疗和免疫疗法的潜在协同作用。","authors":"Samiha Rouf , Casey Moore , Debabrata Saha , Dan Nguyen , MaryLena Bleile , Robert Timmerman , Hao Peng , Steve Jiang","doi":"10.1016/j.jtbi.2024.111974","DOIUrl":null,"url":null,"abstract":"<div><div>PULSAR (personalized ultrafractionated stereotactic adaptive radiotherapy) is a form of radiotherapy method where a patient is given a large dose or “pulse” of radiation a couple of weeks apart rather than daily small doses. The tumor response is then monitored to determine when the subsequent pulse should be given. Pre-clinical trials have shown better tumor response in mice that received immunotherapy along with pulses spaced 10 days apart. However, this was not the case when the pulses were 1 or 4 days apart. Therefore, a synergistic effect between immunotherapy and PULSAR is observed when the pulses are spaced out by a certain number of days. In our study, we aimed to develop a mathematical model that can capture the synergistic effect by considering a time-dependent weight function that takes into account the spacing between pulses. We determined feasible parameters by fitting murine tumor volume data of six treatment groups via simulated annealing algorithm. Applying these parameters to the model we simulated 4000 trials with varying sequencing of pulses. These simulations indicated that if pulses were spaced apart by at least 9 days the tumor volume was about 200 <span><math><mrow><mi>m</mi><msup><mrow><mi>m</mi></mrow><mn>3</mn></msup></mrow></math></span> to 250 <span><math><mrow><mi>m</mi><msup><mrow><mi>m</mi></mrow><mn>3</mn></msup></mrow></math></span> smaller when treated with PULSAR combined with immunotherapy. We successfully demonstrate that our model is simple to implement and can generate tumor volume data that is consistent with the pre-clinical trial data. Our model has the potential to aid in the development of clinical trials of PULSAR therapy.</div></div>","PeriodicalId":54763,"journal":{"name":"Journal of Theoretical Biology","volume":"596 ","pages":"Article 111974"},"PeriodicalIF":1.9000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PULSAR Effect: Revealing potential synergies in combined radiation therapy and immunotherapy via differential equations\",\"authors\":\"Samiha Rouf , Casey Moore , Debabrata Saha , Dan Nguyen , MaryLena Bleile , Robert Timmerman , Hao Peng , Steve Jiang\",\"doi\":\"10.1016/j.jtbi.2024.111974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>PULSAR (personalized ultrafractionated stereotactic adaptive radiotherapy) is a form of radiotherapy method where a patient is given a large dose or “pulse” of radiation a couple of weeks apart rather than daily small doses. The tumor response is then monitored to determine when the subsequent pulse should be given. Pre-clinical trials have shown better tumor response in mice that received immunotherapy along with pulses spaced 10 days apart. However, this was not the case when the pulses were 1 or 4 days apart. Therefore, a synergistic effect between immunotherapy and PULSAR is observed when the pulses are spaced out by a certain number of days. In our study, we aimed to develop a mathematical model that can capture the synergistic effect by considering a time-dependent weight function that takes into account the spacing between pulses. We determined feasible parameters by fitting murine tumor volume data of six treatment groups via simulated annealing algorithm. Applying these parameters to the model we simulated 4000 trials with varying sequencing of pulses. These simulations indicated that if pulses were spaced apart by at least 9 days the tumor volume was about 200 <span><math><mrow><mi>m</mi><msup><mrow><mi>m</mi></mrow><mn>3</mn></msup></mrow></math></span> to 250 <span><math><mrow><mi>m</mi><msup><mrow><mi>m</mi></mrow><mn>3</mn></msup></mrow></math></span> smaller when treated with PULSAR combined with immunotherapy. We successfully demonstrate that our model is simple to implement and can generate tumor volume data that is consistent with the pre-clinical trial data. Our model has the potential to aid in the development of clinical trials of PULSAR therapy.</div></div>\",\"PeriodicalId\":54763,\"journal\":{\"name\":\"Journal of Theoretical Biology\",\"volume\":\"596 \",\"pages\":\"Article 111974\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Theoretical Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022519324002595\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022519324002595","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
PULSAR Effect: Revealing potential synergies in combined radiation therapy and immunotherapy via differential equations
PULSAR (personalized ultrafractionated stereotactic adaptive radiotherapy) is a form of radiotherapy method where a patient is given a large dose or “pulse” of radiation a couple of weeks apart rather than daily small doses. The tumor response is then monitored to determine when the subsequent pulse should be given. Pre-clinical trials have shown better tumor response in mice that received immunotherapy along with pulses spaced 10 days apart. However, this was not the case when the pulses were 1 or 4 days apart. Therefore, a synergistic effect between immunotherapy and PULSAR is observed when the pulses are spaced out by a certain number of days. In our study, we aimed to develop a mathematical model that can capture the synergistic effect by considering a time-dependent weight function that takes into account the spacing between pulses. We determined feasible parameters by fitting murine tumor volume data of six treatment groups via simulated annealing algorithm. Applying these parameters to the model we simulated 4000 trials with varying sequencing of pulses. These simulations indicated that if pulses were spaced apart by at least 9 days the tumor volume was about 200 to 250 smaller when treated with PULSAR combined with immunotherapy. We successfully demonstrate that our model is simple to implement and can generate tumor volume data that is consistent with the pre-clinical trial data. Our model has the potential to aid in the development of clinical trials of PULSAR therapy.
期刊介绍:
The Journal of Theoretical Biology is the leading forum for theoretical perspectives that give insight into biological processes. It covers a very wide range of topics and is of interest to biologists in many areas of research, including:
• Brain and Neuroscience
• Cancer Growth and Treatment
• Cell Biology
• Developmental Biology
• Ecology
• Evolution
• Immunology,
• Infectious and non-infectious Diseases,
• Mathematical, Computational, Biophysical and Statistical Modeling
• Microbiology, Molecular Biology, and Biochemistry
• Networks and Complex Systems
• Physiology
• Pharmacodynamics
• Animal Behavior and Game Theory
Acceptable papers are those that bear significant importance on the biology per se being presented, and not on the mathematical analysis. Papers that include some data or experimental material bearing on theory will be considered, including those that contain comparative study, statistical data analysis, mathematical proof, computer simulations, experiments, field observations, or even philosophical arguments, which are all methods to support or reject theoretical ideas. However, there should be a concerted effort to make papers intelligible to biologists in the chosen field.