Bylhah Mugotitsa, Tathagata Bhattacharjee, Michael Ochola, Dorothy Mailosi, David Amadi, Pauline Andeso, Joseph Kuria, Reinpeter Momanyi, Evans Omondi, Dan Kajungu, Jim Todd, Agnes Kiragga, Jay Greenfield
{"title":"将纵向心理健康数据纳入分期数据库:在 INSPIRE 网络 Datahub 中利用 DDI-lifecycle 和 OMOP 词汇表。","authors":"Bylhah Mugotitsa, Tathagata Bhattacharjee, Michael Ochola, Dorothy Mailosi, David Amadi, Pauline Andeso, Joseph Kuria, Reinpeter Momanyi, Evans Omondi, Dan Kajungu, Jim Todd, Agnes Kiragga, Jay Greenfield","doi":"10.3389/fdata.2024.1435510","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Longitudinal studies are essential for understanding the progression of mental health disorders over time, but combining data collected through different methods to assess conditions like depression, anxiety, and psychosis presents significant challenges. This study presents a mapping technique allowing for the conversion of diverse longitudinal data into a standardized staging database, leveraging the Data Documentation Initiative (DDI) Lifecycle and the Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) standards to ensure consistency and compatibility across datasets.</p><p><strong>Methods: </strong>The \"INSPIRE\" project integrates longitudinal data from African studies into a staging database using metadata documentation standards structured with a snowflake schema. This facilitates the development of Extraction, Transformation, and Loading (ETL) scripts for integrating data into OMOP CDM. The staging database schema is designed to capture the dynamic nature of longitudinal studies, including changes in research protocols and the use of different instruments across data collection waves.</p><p><strong>Results: </strong>Utilizing this mapping method, we streamlined the data migration process to the staging database, enabling subsequent integration into the OMOP CDM. Adherence to metadata standards ensures data quality, promotes interoperability, and expands opportunities for data sharing in mental health research.</p><p><strong>Conclusion: </strong>The staging database serves as an innovative tool in managing longitudinal mental health data, going beyond simple data hosting to act as a comprehensive study descriptor. It provides detailed insights into each study stage and establishes a data science foundation for standardizing and integrating the data into OMOP CDM.</p>","PeriodicalId":52859,"journal":{"name":"Frontiers in Big Data","volume":"7 ","pages":"1435510"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502395/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integrating longitudinal mental health data into a staging database: harnessing DDI-lifecycle and OMOP vocabularies within the INSPIRE Network Datahub.\",\"authors\":\"Bylhah Mugotitsa, Tathagata Bhattacharjee, Michael Ochola, Dorothy Mailosi, David Amadi, Pauline Andeso, Joseph Kuria, Reinpeter Momanyi, Evans Omondi, Dan Kajungu, Jim Todd, Agnes Kiragga, Jay Greenfield\",\"doi\":\"10.3389/fdata.2024.1435510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Longitudinal studies are essential for understanding the progression of mental health disorders over time, but combining data collected through different methods to assess conditions like depression, anxiety, and psychosis presents significant challenges. This study presents a mapping technique allowing for the conversion of diverse longitudinal data into a standardized staging database, leveraging the Data Documentation Initiative (DDI) Lifecycle and the Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) standards to ensure consistency and compatibility across datasets.</p><p><strong>Methods: </strong>The \\\"INSPIRE\\\" project integrates longitudinal data from African studies into a staging database using metadata documentation standards structured with a snowflake schema. This facilitates the development of Extraction, Transformation, and Loading (ETL) scripts for integrating data into OMOP CDM. The staging database schema is designed to capture the dynamic nature of longitudinal studies, including changes in research protocols and the use of different instruments across data collection waves.</p><p><strong>Results: </strong>Utilizing this mapping method, we streamlined the data migration process to the staging database, enabling subsequent integration into the OMOP CDM. Adherence to metadata standards ensures data quality, promotes interoperability, and expands opportunities for data sharing in mental health research.</p><p><strong>Conclusion: </strong>The staging database serves as an innovative tool in managing longitudinal mental health data, going beyond simple data hosting to act as a comprehensive study descriptor. It provides detailed insights into each study stage and establishes a data science foundation for standardizing and integrating the data into OMOP CDM.</p>\",\"PeriodicalId\":52859,\"journal\":{\"name\":\"Frontiers in Big Data\",\"volume\":\"7 \",\"pages\":\"1435510\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502395/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Big Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fdata.2024.1435510\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Big Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fdata.2024.1435510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Integrating longitudinal mental health data into a staging database: harnessing DDI-lifecycle and OMOP vocabularies within the INSPIRE Network Datahub.
Background: Longitudinal studies are essential for understanding the progression of mental health disorders over time, but combining data collected through different methods to assess conditions like depression, anxiety, and psychosis presents significant challenges. This study presents a mapping technique allowing for the conversion of diverse longitudinal data into a standardized staging database, leveraging the Data Documentation Initiative (DDI) Lifecycle and the Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) standards to ensure consistency and compatibility across datasets.
Methods: The "INSPIRE" project integrates longitudinal data from African studies into a staging database using metadata documentation standards structured with a snowflake schema. This facilitates the development of Extraction, Transformation, and Loading (ETL) scripts for integrating data into OMOP CDM. The staging database schema is designed to capture the dynamic nature of longitudinal studies, including changes in research protocols and the use of different instruments across data collection waves.
Results: Utilizing this mapping method, we streamlined the data migration process to the staging database, enabling subsequent integration into the OMOP CDM. Adherence to metadata standards ensures data quality, promotes interoperability, and expands opportunities for data sharing in mental health research.
Conclusion: The staging database serves as an innovative tool in managing longitudinal mental health data, going beyond simple data hosting to act as a comprehensive study descriptor. It provides detailed insights into each study stage and establishes a data science foundation for standardizing and integrating the data into OMOP CDM.