物联网系统中的人工智能安全和网络风险。

IF 2.4 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Frontiers in Big Data Pub Date : 2024-10-10 eCollection Date: 2024-01-01 DOI:10.3389/fdata.2024.1402745
Petar Radanliev, David De Roure, Carsten Maple, Jason R C Nurse, Razvan Nicolescu, Uchenna Ani
{"title":"物联网系统中的人工智能安全和网络风险。","authors":"Petar Radanliev, David De Roure, Carsten Maple, Jason R C Nurse, Razvan Nicolescu, Uchenna Ani","doi":"10.3389/fdata.2024.1402745","DOIUrl":null,"url":null,"abstract":"<p><p>Internet-of-Things (IoT) refers to low-memory connected devices used in various new technologies, including drones, autonomous machines, and robotics. The article aims to understand better cyber risks in low-memory devices and the challenges in IoT risk management. The article includes a critical reflection on current risk methods and their level of appropriateness for IoT. We present a dependency model tailored in context toward current challenges in data strategies and make recommendations for the cybersecurity community. The model can be used for cyber risk estimation and assessment and generic risk impact assessment. The model is developed for cyber risk insurance for new technologies (e.g., drones, robots). Still, practitioners can apply it to estimate and assess cyber risks in organizations and enterprises. Furthermore, this paper critically discusses why risk assessment and management are crucial in this domain and what open questions on IoT risk assessment and risk management remain areas for further research. The paper then presents a more holistic understanding of cyber risks in the IoT. We explain how the industry can use new risk assessment, and management approaches to deal with the challenges posed by emerging IoT cyber risks. We explain how these approaches influence policy on cyber risk and data strategy. We also present a new approach for cyber risk assessment that incorporates IoT risks through dependency modeling. The paper describes why this approach is well suited to estimate IoT risks.</p>","PeriodicalId":52859,"journal":{"name":"Frontiers in Big Data","volume":"7 ","pages":"1402745"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499169/pdf/","citationCount":"0","resultStr":"{\"title\":\"AI security and cyber risk in IoT systems.\",\"authors\":\"Petar Radanliev, David De Roure, Carsten Maple, Jason R C Nurse, Razvan Nicolescu, Uchenna Ani\",\"doi\":\"10.3389/fdata.2024.1402745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Internet-of-Things (IoT) refers to low-memory connected devices used in various new technologies, including drones, autonomous machines, and robotics. The article aims to understand better cyber risks in low-memory devices and the challenges in IoT risk management. The article includes a critical reflection on current risk methods and their level of appropriateness for IoT. We present a dependency model tailored in context toward current challenges in data strategies and make recommendations for the cybersecurity community. The model can be used for cyber risk estimation and assessment and generic risk impact assessment. The model is developed for cyber risk insurance for new technologies (e.g., drones, robots). Still, practitioners can apply it to estimate and assess cyber risks in organizations and enterprises. Furthermore, this paper critically discusses why risk assessment and management are crucial in this domain and what open questions on IoT risk assessment and risk management remain areas for further research. The paper then presents a more holistic understanding of cyber risks in the IoT. We explain how the industry can use new risk assessment, and management approaches to deal with the challenges posed by emerging IoT cyber risks. We explain how these approaches influence policy on cyber risk and data strategy. We also present a new approach for cyber risk assessment that incorporates IoT risks through dependency modeling. The paper describes why this approach is well suited to estimate IoT risks.</p>\",\"PeriodicalId\":52859,\"journal\":{\"name\":\"Frontiers in Big Data\",\"volume\":\"7 \",\"pages\":\"1402745\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499169/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Big Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fdata.2024.1402745\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Big Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fdata.2024.1402745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

物联网(IoT)是指各种新技术中使用的低内存连接设备,包括无人机、自主机器和机器人。文章旨在更好地了解低内存设备的网络风险以及物联网风险管理所面临的挑战。文章对当前的风险方法及其对物联网的适用程度进行了批判性反思。我们针对当前数据战略面临的挑战,提出了一个量身定制的依赖性模型,并为网络安全界提出了建议。该模型可用于网络风险估计和评估以及一般风险影响评估。该模型是为新技术(如无人机、机器人)的网络风险保险而开发的。不过,从业人员仍可将其用于估算和评估组织和企业的网络风险。此外,本文还批判性地讨论了为什么风险评估和管理在这一领域至关重要,以及在物联网风险评估和风险管理方面还有哪些开放性问题有待进一步研究。然后,本文介绍了对物联网网络风险的更全面理解。我们解释了业界如何利用新的风险评估和管理方法来应对新出现的物联网网络风险所带来的挑战。我们解释了这些方法如何影响网络风险政策和数据战略。我们还介绍了一种新的网络风险评估方法,该方法通过依赖性建模将物联网风险纳入其中。本文介绍了这种方法非常适合估算物联网风险的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AI security and cyber risk in IoT systems.

Internet-of-Things (IoT) refers to low-memory connected devices used in various new technologies, including drones, autonomous machines, and robotics. The article aims to understand better cyber risks in low-memory devices and the challenges in IoT risk management. The article includes a critical reflection on current risk methods and their level of appropriateness for IoT. We present a dependency model tailored in context toward current challenges in data strategies and make recommendations for the cybersecurity community. The model can be used for cyber risk estimation and assessment and generic risk impact assessment. The model is developed for cyber risk insurance for new technologies (e.g., drones, robots). Still, practitioners can apply it to estimate and assess cyber risks in organizations and enterprises. Furthermore, this paper critically discusses why risk assessment and management are crucial in this domain and what open questions on IoT risk assessment and risk management remain areas for further research. The paper then presents a more holistic understanding of cyber risks in the IoT. We explain how the industry can use new risk assessment, and management approaches to deal with the challenges posed by emerging IoT cyber risks. We explain how these approaches influence policy on cyber risk and data strategy. We also present a new approach for cyber risk assessment that incorporates IoT risks through dependency modeling. The paper describes why this approach is well suited to estimate IoT risks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.20
自引率
3.20%
发文量
122
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信