[深度学习生成磁共振图像的临床验证研究]。

Q4 Medicine
Guangdong Fu, Lifeng Peng, Zhihao Zhang, Lei Xiang, Long Wang, Jian He
{"title":"[深度学习生成磁共振图像的临床验证研究]。","authors":"Guangdong Fu, Lifeng Peng, Zhihao Zhang, Lei Xiang, Long Wang, Jian He","doi":"10.12455/j.issn.1671-7104.240050","DOIUrl":null,"url":null,"abstract":"<p><p>This research utilizes a deep learning-based image generation algorithm to generate pseudo-sagittal STIR sequences from sagittal T1WI and T2WI MR images. The evaluations include both subjective assessments by two physicians and objective analyses, measuring image quality through SNR and CNR in ROIs of five different tissues. Further analyses, including MAE, PSNR, SSIM, and COR, establish a strong correlation between the generated STIR sequences and the gold standard, with Bland-Altman analysis indicating pixel consistency. The findings indicate that the deep learning-generated STIR sequences not only align with but potentially surpass the gold standard in terms of image quality and clinical diagnostic capabilities. Moreover, the approach demonstrates promise for clinical implementation, offering reduced scan time and enhanced imaging efficiency.</p>","PeriodicalId":52535,"journal":{"name":"中国医疗器械杂志","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Clinical Validation Study of Deep Learning-Generated Magnetic Resonance Images].\",\"authors\":\"Guangdong Fu, Lifeng Peng, Zhihao Zhang, Lei Xiang, Long Wang, Jian He\",\"doi\":\"10.12455/j.issn.1671-7104.240050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This research utilizes a deep learning-based image generation algorithm to generate pseudo-sagittal STIR sequences from sagittal T1WI and T2WI MR images. The evaluations include both subjective assessments by two physicians and objective analyses, measuring image quality through SNR and CNR in ROIs of five different tissues. Further analyses, including MAE, PSNR, SSIM, and COR, establish a strong correlation between the generated STIR sequences and the gold standard, with Bland-Altman analysis indicating pixel consistency. The findings indicate that the deep learning-generated STIR sequences not only align with but potentially surpass the gold standard in terms of image quality and clinical diagnostic capabilities. Moreover, the approach demonstrates promise for clinical implementation, offering reduced scan time and enhanced imaging efficiency.</p>\",\"PeriodicalId\":52535,\"journal\":{\"name\":\"中国医疗器械杂志\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"中国医疗器械杂志\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.12455/j.issn.1671-7104.240050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国医疗器械杂志","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12455/j.issn.1671-7104.240050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

这项研究利用基于深度学习的图像生成算法,从矢状位 T1WI 和 T2WI MR 图像生成伪矢状位 STIR 序列。评估包括两名医生的主观评估和客观分析,通过五个不同组织 ROI 的 SNR 和 CNR 来测量图像质量。包括 MAE、PSNR、SSIM 和 COR 在内的进一步分析表明,生成的 STIR 序列与黄金标准之间具有很强的相关性,布兰-阿尔特曼分析表明像素具有一致性。研究结果表明,深度学习生成的 STIR 序列在图像质量和临床诊断能力方面不仅与黄金标准一致,而且有可能超越黄金标准。此外,该方法还具有临床应用前景,可缩短扫描时间,提高成像效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[Clinical Validation Study of Deep Learning-Generated Magnetic Resonance Images].

This research utilizes a deep learning-based image generation algorithm to generate pseudo-sagittal STIR sequences from sagittal T1WI and T2WI MR images. The evaluations include both subjective assessments by two physicians and objective analyses, measuring image quality through SNR and CNR in ROIs of five different tissues. Further analyses, including MAE, PSNR, SSIM, and COR, establish a strong correlation between the generated STIR sequences and the gold standard, with Bland-Altman analysis indicating pixel consistency. The findings indicate that the deep learning-generated STIR sequences not only align with but potentially surpass the gold standard in terms of image quality and clinical diagnostic capabilities. Moreover, the approach demonstrates promise for clinical implementation, offering reduced scan time and enhanced imaging efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
中国医疗器械杂志
中国医疗器械杂志 Medicine-Medicine (all)
CiteScore
0.40
自引率
0.00%
发文量
8086
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信