VCU-Net:用于脑血管图像分割的带特征拼接的血管卷积网络。

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Mengxin Li, Fan Lv, Jiaming Chen, Kunyan Zheng, Jingwen Zhao
{"title":"VCU-Net:用于脑血管图像分割的带特征拼接的血管卷积网络。","authors":"Mengxin Li, Fan Lv, Jiaming Chen, Kunyan Zheng, Jingwen Zhao","doi":"10.1007/s11517-024-03219-4","DOIUrl":null,"url":null,"abstract":"<p><p>Cerebrovascular image segmentation is one of the crucial tasks in the field of biomedical image processing. Due to the variable morphology of cerebral blood vessels, the traditional convolutional kernel is weak in perceiving the structure of elongated blood vessels in the brain, and it is easy to lose the feature information of the elongated blood vessels during the network training process. In this paper, a vascular convolutional U-network (VCU-Net) is proposed to address these problems. This network utilizes a new convolution (vascular convolution) instead of the traditional convolution kernel, to extract features of elongated blood vessels in the brain with different morphologies and orientations by adaptive convolution. In the network encoding stage, a new feature splicing method is used to combine the feature tensor obtained through vascular convolution with the original tensor to provide richer feature information. Experiments show that the DSC and IOU of the proposed method are 53.57% and 69.74%, which are improved by 2.11% and 2.01% over the best performance of the GVC-Net among several typical models. In image visualization, the proposed network has better segmentation performance for complex cerebrovascular structures, especially in dealing with elongated blood vessels in the brain, which shows better integrity and continuity.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VCU-Net: a vascular convolutional network with feature splicing for cerebrovascular image segmentation.\",\"authors\":\"Mengxin Li, Fan Lv, Jiaming Chen, Kunyan Zheng, Jingwen Zhao\",\"doi\":\"10.1007/s11517-024-03219-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cerebrovascular image segmentation is one of the crucial tasks in the field of biomedical image processing. Due to the variable morphology of cerebral blood vessels, the traditional convolutional kernel is weak in perceiving the structure of elongated blood vessels in the brain, and it is easy to lose the feature information of the elongated blood vessels during the network training process. In this paper, a vascular convolutional U-network (VCU-Net) is proposed to address these problems. This network utilizes a new convolution (vascular convolution) instead of the traditional convolution kernel, to extract features of elongated blood vessels in the brain with different morphologies and orientations by adaptive convolution. In the network encoding stage, a new feature splicing method is used to combine the feature tensor obtained through vascular convolution with the original tensor to provide richer feature information. Experiments show that the DSC and IOU of the proposed method are 53.57% and 69.74%, which are improved by 2.11% and 2.01% over the best performance of the GVC-Net among several typical models. In image visualization, the proposed network has better segmentation performance for complex cerebrovascular structures, especially in dealing with elongated blood vessels in the brain, which shows better integrity and continuity.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-024-03219-4\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03219-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

脑血管图像分割是生物医学图像处理领域的重要任务之一。由于脑血管形态多变,传统的卷积核对脑部细长血管结构的感知能力较弱,在网络训练过程中容易丢失细长血管的特征信息。本文提出了一种血管卷积 U 型网络(VCU-Net)来解决这些问题。该网络利用新的卷积(血管卷积)代替传统的卷积核,通过自适应卷积提取大脑中不同形态和方向的拉长血管特征。在网络编码阶段,采用一种新的特征拼接方法,将血管卷积获得的特征张量与原始张量相结合,以提供更丰富的特征信息。实验表明,所提方法的 DSC 和 IOU 分别为 53.57% 和 69.74%,比几个典型模型中性能最好的 GVC-Net 提高了 2.11% 和 2.01%。在图像可视化方面,提出的网络对复杂的脑血管结构有更好的分割性能,特别是在处理脑部细长血管时,表现出更好的完整性和连续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
VCU-Net: a vascular convolutional network with feature splicing for cerebrovascular image segmentation.

Cerebrovascular image segmentation is one of the crucial tasks in the field of biomedical image processing. Due to the variable morphology of cerebral blood vessels, the traditional convolutional kernel is weak in perceiving the structure of elongated blood vessels in the brain, and it is easy to lose the feature information of the elongated blood vessels during the network training process. In this paper, a vascular convolutional U-network (VCU-Net) is proposed to address these problems. This network utilizes a new convolution (vascular convolution) instead of the traditional convolution kernel, to extract features of elongated blood vessels in the brain with different morphologies and orientations by adaptive convolution. In the network encoding stage, a new feature splicing method is used to combine the feature tensor obtained through vascular convolution with the original tensor to provide richer feature information. Experiments show that the DSC and IOU of the proposed method are 53.57% and 69.74%, which are improved by 2.11% and 2.01% over the best performance of the GVC-Net among several typical models. In image visualization, the proposed network has better segmentation performance for complex cerebrovascular structures, especially in dealing with elongated blood vessels in the brain, which shows better integrity and continuity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信