Zulqarnain Rashid, Amos A Folarin, Yuezhou Zhang, Yatharth Ranjan, Pauline Conde, Heet Sankesara, Shaoxiong Sun, Callum Stewart, Petroula Laiou, Richard J B Dobson
{"title":"精神和身体状况的数字表型:通过 RADAR-Base 平台远程监控患者。","authors":"Zulqarnain Rashid, Amos A Folarin, Yuezhou Zhang, Yatharth Ranjan, Pauline Conde, Heet Sankesara, Shaoxiong Sun, Callum Stewart, Petroula Laiou, Richard J B Dobson","doi":"10.2196/51259","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The use of digital biomarkers through remote patient monitoring offers valuable and timely insights into a patient's condition, including aspects such as disease progression and treatment response. This serves as a complementary resource to traditional health care settings leveraging mobile technology to improve scale and lower latency, cost, and burden.</p><p><strong>Objective: </strong>Smartphones with embedded and connected sensors have immense potential for improving health care through various apps and mobile health (mHealth) platforms. This capability could enable the development of reliable digital biomarkers from long-term longitudinal data collected remotely from patients.</p><p><strong>Methods: </strong>We built an open-source platform, RADAR-base, to support large-scale data collection in remote monitoring studies. RADAR-base is a modern remote data collection platform built around Confluent's Apache Kafka to support scalability, extensibility, security, privacy, and quality of data. It provides support for study design and setup and active (eg, patient-reported outcome measures) and passive (eg, phone sensors, wearable devices, and Internet of Things) remote data collection capabilities with feature generation (eg, behavioral, environmental, and physiological markers). The back end enables secure data transmission and scalable solutions for data storage, management, and data access.</p><p><strong>Results: </strong>The platform has been used to successfully collect longitudinal data for various cohorts in a number of disease areas including multiple sclerosis, depression, epilepsy, attention-deficit/hyperactivity disorder, Alzheimer disease, autism, and lung diseases. Digital biomarkers developed through collected data are providing useful insights into different diseases.</p><p><strong>Conclusions: </strong>RADAR-base offers a contemporary, open-source solution driven by the community for remotely monitoring, collecting data, and digitally characterizing both physical and mental health conditions. Clinicians have the ability to enhance their insight through the use of digital biomarkers, enabling improved prevention, personalization, and early intervention in the context of disease management.</p>","PeriodicalId":48616,"journal":{"name":"Jmir Mental Health","volume":"11 ","pages":"e51259"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524428/pdf/","citationCount":"0","resultStr":"{\"title\":\"Digital Phenotyping of Mental and Physical Conditions: Remote Monitoring of Patients Through RADAR-Base Platform.\",\"authors\":\"Zulqarnain Rashid, Amos A Folarin, Yuezhou Zhang, Yatharth Ranjan, Pauline Conde, Heet Sankesara, Shaoxiong Sun, Callum Stewart, Petroula Laiou, Richard J B Dobson\",\"doi\":\"10.2196/51259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The use of digital biomarkers through remote patient monitoring offers valuable and timely insights into a patient's condition, including aspects such as disease progression and treatment response. This serves as a complementary resource to traditional health care settings leveraging mobile technology to improve scale and lower latency, cost, and burden.</p><p><strong>Objective: </strong>Smartphones with embedded and connected sensors have immense potential for improving health care through various apps and mobile health (mHealth) platforms. This capability could enable the development of reliable digital biomarkers from long-term longitudinal data collected remotely from patients.</p><p><strong>Methods: </strong>We built an open-source platform, RADAR-base, to support large-scale data collection in remote monitoring studies. RADAR-base is a modern remote data collection platform built around Confluent's Apache Kafka to support scalability, extensibility, security, privacy, and quality of data. It provides support for study design and setup and active (eg, patient-reported outcome measures) and passive (eg, phone sensors, wearable devices, and Internet of Things) remote data collection capabilities with feature generation (eg, behavioral, environmental, and physiological markers). The back end enables secure data transmission and scalable solutions for data storage, management, and data access.</p><p><strong>Results: </strong>The platform has been used to successfully collect longitudinal data for various cohorts in a number of disease areas including multiple sclerosis, depression, epilepsy, attention-deficit/hyperactivity disorder, Alzheimer disease, autism, and lung diseases. Digital biomarkers developed through collected data are providing useful insights into different diseases.</p><p><strong>Conclusions: </strong>RADAR-base offers a contemporary, open-source solution driven by the community for remotely monitoring, collecting data, and digitally characterizing both physical and mental health conditions. Clinicians have the ability to enhance their insight through the use of digital biomarkers, enabling improved prevention, personalization, and early intervention in the context of disease management.</p>\",\"PeriodicalId\":48616,\"journal\":{\"name\":\"Jmir Mental Health\",\"volume\":\"11 \",\"pages\":\"e51259\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524428/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jmir Mental Health\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2196/51259\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHIATRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jmir Mental Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/51259","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
Digital Phenotyping of Mental and Physical Conditions: Remote Monitoring of Patients Through RADAR-Base Platform.
Background: The use of digital biomarkers through remote patient monitoring offers valuable and timely insights into a patient's condition, including aspects such as disease progression and treatment response. This serves as a complementary resource to traditional health care settings leveraging mobile technology to improve scale and lower latency, cost, and burden.
Objective: Smartphones with embedded and connected sensors have immense potential for improving health care through various apps and mobile health (mHealth) platforms. This capability could enable the development of reliable digital biomarkers from long-term longitudinal data collected remotely from patients.
Methods: We built an open-source platform, RADAR-base, to support large-scale data collection in remote monitoring studies. RADAR-base is a modern remote data collection platform built around Confluent's Apache Kafka to support scalability, extensibility, security, privacy, and quality of data. It provides support for study design and setup and active (eg, patient-reported outcome measures) and passive (eg, phone sensors, wearable devices, and Internet of Things) remote data collection capabilities with feature generation (eg, behavioral, environmental, and physiological markers). The back end enables secure data transmission and scalable solutions for data storage, management, and data access.
Results: The platform has been used to successfully collect longitudinal data for various cohorts in a number of disease areas including multiple sclerosis, depression, epilepsy, attention-deficit/hyperactivity disorder, Alzheimer disease, autism, and lung diseases. Digital biomarkers developed through collected data are providing useful insights into different diseases.
Conclusions: RADAR-base offers a contemporary, open-source solution driven by the community for remotely monitoring, collecting data, and digitally characterizing both physical and mental health conditions. Clinicians have the ability to enhance their insight through the use of digital biomarkers, enabling improved prevention, personalization, and early intervention in the context of disease management.
期刊介绍:
JMIR Mental Health (JMH, ISSN 2368-7959) is a PubMed-indexed, peer-reviewed sister journal of JMIR, the leading eHealth journal (Impact Factor 2016: 5.175).
JMIR Mental Health focusses on digital health and Internet interventions, technologies and electronic innovations (software and hardware) for mental health, addictions, online counselling and behaviour change. This includes formative evaluation and system descriptions, theoretical papers, review papers, viewpoint/vision papers, and rigorous evaluations.