{"title":"基于多序列 MR 的合成 CT 生成,使用 CycleGAN 进行头颈部仅 MRI 规划。","authors":"Liwei Deng, Songyu Chen, Yunfa Li, Sijuan Huang, Xin Yang, Jing Wang","doi":"10.1007/s13534-024-00402-2","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this study is to investigate the influence of different magnetic resonance (MR) sequences on the accuracy of generating computed tomography (sCT) images for nasopharyngeal carcinoma based on CycleGAN. In this study, 143 patients' head and neck MR sequence (T1, T2, T1C, and T1DIXONC) and CT imaging data were acquired. The generator and discriminator of CycleGAN are improved to achieve the purpose of balance confrontation, and a cyclic consistent structure control domain is proposed in terms of loss function. Four different single-sequence MR images and one multi-sequence MR image were used to evaluate the accuracy of sCT. During the model testing phase, five testing scenarios were employed to further assess the mean absolute error, peak signal-to-noise ratio, structural similarity index, and root mean square error between the actual CT images and the sCT images generated by different models. T1 sequence-based sCT achieved better results in single-sequence MR-based sCT. Multi-sequence MR-based sCT achieved better results with T1 sequence-based sCT in terms of evaluation metrics. For metrological evaluation, the global gamma passage rate of sCT based on sequence MR was greater than 95% at 3%/3 mm, except for sCT based on T2 sequence MR. We developed a CycleGAN method to synthesize CT using different MR sequences, this method shows encouraging potential for dosimetric evaluation.</p>","PeriodicalId":46898,"journal":{"name":"Biomedical Engineering Letters","volume":"14 6","pages":"1319-1333"},"PeriodicalIF":2.8000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502648/pdf/","citationCount":"0","resultStr":"{\"title\":\"Synthetic CT generation based on multi-sequence MR using CycleGAN for head and neck MRI-only planning.\",\"authors\":\"Liwei Deng, Songyu Chen, Yunfa Li, Sijuan Huang, Xin Yang, Jing Wang\",\"doi\":\"10.1007/s13534-024-00402-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The purpose of this study is to investigate the influence of different magnetic resonance (MR) sequences on the accuracy of generating computed tomography (sCT) images for nasopharyngeal carcinoma based on CycleGAN. In this study, 143 patients' head and neck MR sequence (T1, T2, T1C, and T1DIXONC) and CT imaging data were acquired. The generator and discriminator of CycleGAN are improved to achieve the purpose of balance confrontation, and a cyclic consistent structure control domain is proposed in terms of loss function. Four different single-sequence MR images and one multi-sequence MR image were used to evaluate the accuracy of sCT. During the model testing phase, five testing scenarios were employed to further assess the mean absolute error, peak signal-to-noise ratio, structural similarity index, and root mean square error between the actual CT images and the sCT images generated by different models. T1 sequence-based sCT achieved better results in single-sequence MR-based sCT. Multi-sequence MR-based sCT achieved better results with T1 sequence-based sCT in terms of evaluation metrics. For metrological evaluation, the global gamma passage rate of sCT based on sequence MR was greater than 95% at 3%/3 mm, except for sCT based on T2 sequence MR. We developed a CycleGAN method to synthesize CT using different MR sequences, this method shows encouraging potential for dosimetric evaluation.</p>\",\"PeriodicalId\":46898,\"journal\":{\"name\":\"Biomedical Engineering Letters\",\"volume\":\"14 6\",\"pages\":\"1319-1333\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502648/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Engineering Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13534-024-00402-2\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13534-024-00402-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Synthetic CT generation based on multi-sequence MR using CycleGAN for head and neck MRI-only planning.
The purpose of this study is to investigate the influence of different magnetic resonance (MR) sequences on the accuracy of generating computed tomography (sCT) images for nasopharyngeal carcinoma based on CycleGAN. In this study, 143 patients' head and neck MR sequence (T1, T2, T1C, and T1DIXONC) and CT imaging data were acquired. The generator and discriminator of CycleGAN are improved to achieve the purpose of balance confrontation, and a cyclic consistent structure control domain is proposed in terms of loss function. Four different single-sequence MR images and one multi-sequence MR image were used to evaluate the accuracy of sCT. During the model testing phase, five testing scenarios were employed to further assess the mean absolute error, peak signal-to-noise ratio, structural similarity index, and root mean square error between the actual CT images and the sCT images generated by different models. T1 sequence-based sCT achieved better results in single-sequence MR-based sCT. Multi-sequence MR-based sCT achieved better results with T1 sequence-based sCT in terms of evaluation metrics. For metrological evaluation, the global gamma passage rate of sCT based on sequence MR was greater than 95% at 3%/3 mm, except for sCT based on T2 sequence MR. We developed a CycleGAN method to synthesize CT using different MR sequences, this method shows encouraging potential for dosimetric evaluation.
期刊介绍:
Biomedical Engineering Letters (BMEL) aims to present the innovative experimental science and technological development in the biomedical field as well as clinical application of new development. The article must contain original biomedical engineering content, defined as development, theoretical analysis, and evaluation/validation of a new technique. BMEL publishes the following types of papers: original articles, review articles, editorials, and letters to the editor. All the papers are reviewed in single-blind fashion.