Ato Kapfo, Sumit Datta, Samarendra Dandapat, Prabin Kumar Bora
{"title":"基于小波子带的 LSTM 模型,用于从减少的导联集合成 12 导联心电图。","authors":"Ato Kapfo, Sumit Datta, Samarendra Dandapat, Prabin Kumar Bora","doi":"10.1007/s13534-024-00412-0","DOIUrl":null,"url":null,"abstract":"<p><p>Synthesis of a 12-lead electrocardiogram from a reduced lead set has previously been extensively studied in order to meet patient comfort, minimise complexity, and enable telemonitoring. Traditional methods relied solely on the inter-lead correlation between the standard twelve leads for learning the models. The 12-lead ECG possesses not only inter-lead correlation but also intra-lead correlation. Learning a model that can exploit this spatio-temporal information in the ECG could generate lead signals while preserving important diagnostic information. The proposed approach takes leverage of the enhanced inter-lead correlation of the ECG signal in the wavelet domain. Long-short-term memory (LSTM) networks, which have emerged as a powerful tool for sequential data mining, are a type of recurrent neural network architecture with an inherent capability to capture the spatiotemporal information of the heart signal. This work proposes the deep learning architecture that utilizes the discrete wavelet transform and the LSTM to reconstruct a generic 12-lead ECG from a reduced lead set. The experimental results are evaluated using different diagnostic measures and similarity metrics. The proposed framework is well founded, and accurate reconstruction is possible as it can capture clinically significant features and provides a robust solution against noise.</p>","PeriodicalId":46898,"journal":{"name":"Biomedical Engineering Letters","volume":"14 6","pages":"1385-1395"},"PeriodicalIF":2.8000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502641/pdf/","citationCount":"0","resultStr":"{\"title\":\"A wavelet subband based LSTM model for 12-lead ECG synthesis from reduced lead set.\",\"authors\":\"Ato Kapfo, Sumit Datta, Samarendra Dandapat, Prabin Kumar Bora\",\"doi\":\"10.1007/s13534-024-00412-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Synthesis of a 12-lead electrocardiogram from a reduced lead set has previously been extensively studied in order to meet patient comfort, minimise complexity, and enable telemonitoring. Traditional methods relied solely on the inter-lead correlation between the standard twelve leads for learning the models. The 12-lead ECG possesses not only inter-lead correlation but also intra-lead correlation. Learning a model that can exploit this spatio-temporal information in the ECG could generate lead signals while preserving important diagnostic information. The proposed approach takes leverage of the enhanced inter-lead correlation of the ECG signal in the wavelet domain. Long-short-term memory (LSTM) networks, which have emerged as a powerful tool for sequential data mining, are a type of recurrent neural network architecture with an inherent capability to capture the spatiotemporal information of the heart signal. This work proposes the deep learning architecture that utilizes the discrete wavelet transform and the LSTM to reconstruct a generic 12-lead ECG from a reduced lead set. The experimental results are evaluated using different diagnostic measures and similarity metrics. The proposed framework is well founded, and accurate reconstruction is possible as it can capture clinically significant features and provides a robust solution against noise.</p>\",\"PeriodicalId\":46898,\"journal\":{\"name\":\"Biomedical Engineering Letters\",\"volume\":\"14 6\",\"pages\":\"1385-1395\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502641/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Engineering Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13534-024-00412-0\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13534-024-00412-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A wavelet subband based LSTM model for 12-lead ECG synthesis from reduced lead set.
Synthesis of a 12-lead electrocardiogram from a reduced lead set has previously been extensively studied in order to meet patient comfort, minimise complexity, and enable telemonitoring. Traditional methods relied solely on the inter-lead correlation between the standard twelve leads for learning the models. The 12-lead ECG possesses not only inter-lead correlation but also intra-lead correlation. Learning a model that can exploit this spatio-temporal information in the ECG could generate lead signals while preserving important diagnostic information. The proposed approach takes leverage of the enhanced inter-lead correlation of the ECG signal in the wavelet domain. Long-short-term memory (LSTM) networks, which have emerged as a powerful tool for sequential data mining, are a type of recurrent neural network architecture with an inherent capability to capture the spatiotemporal information of the heart signal. This work proposes the deep learning architecture that utilizes the discrete wavelet transform and the LSTM to reconstruct a generic 12-lead ECG from a reduced lead set. The experimental results are evaluated using different diagnostic measures and similarity metrics. The proposed framework is well founded, and accurate reconstruction is possible as it can capture clinically significant features and provides a robust solution against noise.
期刊介绍:
Biomedical Engineering Letters (BMEL) aims to present the innovative experimental science and technological development in the biomedical field as well as clinical application of new development. The article must contain original biomedical engineering content, defined as development, theoretical analysis, and evaluation/validation of a new technique. BMEL publishes the following types of papers: original articles, review articles, editorials, and letters to the editor. All the papers are reviewed in single-blind fashion.