Wonjin Kim, Sun-Young Jeon, Gyuri Byun, Hongki Yoo, Jang-Hwan Choi
{"title":"从感知质量的角度对基于深度学习的低剂量计算机断层扫描去噪进行系统回顾。","authors":"Wonjin Kim, Sun-Young Jeon, Gyuri Byun, Hongki Yoo, Jang-Hwan Choi","doi":"10.1007/s13534-024-00419-7","DOIUrl":null,"url":null,"abstract":"<p><p>Low-dose computed tomography (LDCT) scans are essential in reducing radiation exposure but often suffer from significant image noise that can impair diagnostic accuracy. While deep learning approaches have enhanced LDCT denoising capabilities, the predominant reliance on objective metrics like PSNR and SSIM has resulted in over-smoothed images that lack critical detail. This paper explores advanced deep learning methods tailored specifically to improve perceptual quality in LDCT images, focusing on generating diagnostic-quality images preferred in clinical practice. We review and compare current methodologies, including perceptual loss functions and generative adversarial networks, addressing the significant limitations of current benchmarks and the subjective nature of perceptual quality evaluation. Through a systematic analysis, this study underscores the urgent need for developing methods that balance both perceptual and diagnostic quality, proposing new directions for future research in the field.</p>","PeriodicalId":46898,"journal":{"name":"Biomedical Engineering Letters","volume":"14 6","pages":"1153-1173"},"PeriodicalIF":2.8000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502640/pdf/","citationCount":"0","resultStr":"{\"title\":\"A systematic review of deep learning-based denoising for low-dose computed tomography from a perceptual quality perspective.\",\"authors\":\"Wonjin Kim, Sun-Young Jeon, Gyuri Byun, Hongki Yoo, Jang-Hwan Choi\",\"doi\":\"10.1007/s13534-024-00419-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Low-dose computed tomography (LDCT) scans are essential in reducing radiation exposure but often suffer from significant image noise that can impair diagnostic accuracy. While deep learning approaches have enhanced LDCT denoising capabilities, the predominant reliance on objective metrics like PSNR and SSIM has resulted in over-smoothed images that lack critical detail. This paper explores advanced deep learning methods tailored specifically to improve perceptual quality in LDCT images, focusing on generating diagnostic-quality images preferred in clinical practice. We review and compare current methodologies, including perceptual loss functions and generative adversarial networks, addressing the significant limitations of current benchmarks and the subjective nature of perceptual quality evaluation. Through a systematic analysis, this study underscores the urgent need for developing methods that balance both perceptual and diagnostic quality, proposing new directions for future research in the field.</p>\",\"PeriodicalId\":46898,\"journal\":{\"name\":\"Biomedical Engineering Letters\",\"volume\":\"14 6\",\"pages\":\"1153-1173\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502640/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Engineering Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13534-024-00419-7\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13534-024-00419-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A systematic review of deep learning-based denoising for low-dose computed tomography from a perceptual quality perspective.
Low-dose computed tomography (LDCT) scans are essential in reducing radiation exposure but often suffer from significant image noise that can impair diagnostic accuracy. While deep learning approaches have enhanced LDCT denoising capabilities, the predominant reliance on objective metrics like PSNR and SSIM has resulted in over-smoothed images that lack critical detail. This paper explores advanced deep learning methods tailored specifically to improve perceptual quality in LDCT images, focusing on generating diagnostic-quality images preferred in clinical practice. We review and compare current methodologies, including perceptual loss functions and generative adversarial networks, addressing the significant limitations of current benchmarks and the subjective nature of perceptual quality evaluation. Through a systematic analysis, this study underscores the urgent need for developing methods that balance both perceptual and diagnostic quality, proposing new directions for future research in the field.
期刊介绍:
Biomedical Engineering Letters (BMEL) aims to present the innovative experimental science and technological development in the biomedical field as well as clinical application of new development. The article must contain original biomedical engineering content, defined as development, theoretical analysis, and evaluation/validation of a new technique. BMEL publishes the following types of papers: original articles, review articles, editorials, and letters to the editor. All the papers are reviewed in single-blind fashion.