[具有柔性尖端耦合气泡的高稳定性增强型超声微流体结构]。

Q4 Medicine
Yue Liu, Yuying Zhou, Wenchang Zhang, Shaohua Chen, Shengfa Liang
{"title":"[具有柔性尖端耦合气泡的高稳定性增强型超声微流体结构]。","authors":"Yue Liu, Yuying Zhou, Wenchang Zhang, Shaohua Chen, Shengfa Liang","doi":"10.7507/1001-5515.202401076","DOIUrl":null,"url":null,"abstract":"<p><p>Ultrasonic microfluidic technology is a technique that couples high-frequency ultrasonic excitation to microfluidic chips. To improve the issues of poor disturbance effects with flexible tip structures and the susceptibility of bubbles to thermal deformation, we propose an enhanced ultrasonic microchannel structure that couples flexible tips with bubbles aiming to improve the disturbance effects and the stability duration. Firstly, we used finite element analysis to simulate the flow field distribution characteristics of the flexible tip, the bubble, and the coupling structure and obtained the steady-state distribution characteristics of the velocity field. Next, we fabricated ultrasonic microfluidic chips based on these three structures, employing 2.8 μm polystyrene microspheres as tracers to analyze the disturbance characteristics of the flow field. Additionally, we analyzed the bubble size and growth rate within the adhering bubbles and coupling structures. Finally, we verified the applicability of the coupling structure for biological samples using human red blood cells (RBCs). Experimental results indicated that, compared to the flexible tip and adhering bubble structures, the flow field disturbance range of the coupling structure increased by 439.53% and 133.48%, respectively; the bubble growth rate reduced from 14.4% to 3.3%. The enhanced ultrasonic microfluidic structure proposed in this study shows great potential for widespread applications in micro-scale flow field disturbance and particle manipulation.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"41 5","pages":"919-925"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11527759/pdf/","citationCount":"0","resultStr":"{\"title\":\"[High stability enhanced ultrasonic microfluidic structure with flexible tip coupled bubbles].\",\"authors\":\"Yue Liu, Yuying Zhou, Wenchang Zhang, Shaohua Chen, Shengfa Liang\",\"doi\":\"10.7507/1001-5515.202401076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ultrasonic microfluidic technology is a technique that couples high-frequency ultrasonic excitation to microfluidic chips. To improve the issues of poor disturbance effects with flexible tip structures and the susceptibility of bubbles to thermal deformation, we propose an enhanced ultrasonic microchannel structure that couples flexible tips with bubbles aiming to improve the disturbance effects and the stability duration. Firstly, we used finite element analysis to simulate the flow field distribution characteristics of the flexible tip, the bubble, and the coupling structure and obtained the steady-state distribution characteristics of the velocity field. Next, we fabricated ultrasonic microfluidic chips based on these three structures, employing 2.8 μm polystyrene microspheres as tracers to analyze the disturbance characteristics of the flow field. Additionally, we analyzed the bubble size and growth rate within the adhering bubbles and coupling structures. Finally, we verified the applicability of the coupling structure for biological samples using human red blood cells (RBCs). Experimental results indicated that, compared to the flexible tip and adhering bubble structures, the flow field disturbance range of the coupling structure increased by 439.53% and 133.48%, respectively; the bubble growth rate reduced from 14.4% to 3.3%. The enhanced ultrasonic microfluidic structure proposed in this study shows great potential for widespread applications in micro-scale flow field disturbance and particle manipulation.</p>\",\"PeriodicalId\":39324,\"journal\":{\"name\":\"生物医学工程学杂志\",\"volume\":\"41 5\",\"pages\":\"919-925\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11527759/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"生物医学工程学杂志\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.7507/1001-5515.202401076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物医学工程学杂志","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.7507/1001-5515.202401076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

超声波微流控技术是一种将高频超声波激励耦合到微流控芯片的技术。为了改善柔性尖端结构干扰效果差和气泡易受热变形影响的问题,我们提出了一种柔性尖端与气泡耦合的增强型超声微通道结构,旨在改善干扰效果和稳定持续时间。首先,我们利用有限元分析模拟了柔性尖端、气泡和耦合结构的流场分布特征,并获得了速度场的稳态分布特征。接着,我们在这三种结构的基础上制作了超声微流控芯片,采用 2.8 μm 聚苯乙烯微球作为示踪剂,分析了流场的扰动特性。此外,我们还分析了附着气泡和耦合结构内的气泡大小和生长速度。最后,我们利用人体红细胞(RBC)验证了耦合结构对生物样本的适用性。实验结果表明,与柔性尖端和粘附气泡结构相比,耦合结构的流场扰动范围分别增加了 439.53% 和 133.48%;气泡增长率从 14.4% 降至 3.3%。本研究提出的增强型超声微流体结构在微尺度流场扰动和粒子操纵方面具有巨大的广泛应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[High stability enhanced ultrasonic microfluidic structure with flexible tip coupled bubbles].

Ultrasonic microfluidic technology is a technique that couples high-frequency ultrasonic excitation to microfluidic chips. To improve the issues of poor disturbance effects with flexible tip structures and the susceptibility of bubbles to thermal deformation, we propose an enhanced ultrasonic microchannel structure that couples flexible tips with bubbles aiming to improve the disturbance effects and the stability duration. Firstly, we used finite element analysis to simulate the flow field distribution characteristics of the flexible tip, the bubble, and the coupling structure and obtained the steady-state distribution characteristics of the velocity field. Next, we fabricated ultrasonic microfluidic chips based on these three structures, employing 2.8 μm polystyrene microspheres as tracers to analyze the disturbance characteristics of the flow field. Additionally, we analyzed the bubble size and growth rate within the adhering bubbles and coupling structures. Finally, we verified the applicability of the coupling structure for biological samples using human red blood cells (RBCs). Experimental results indicated that, compared to the flexible tip and adhering bubble structures, the flow field disturbance range of the coupling structure increased by 439.53% and 133.48%, respectively; the bubble growth rate reduced from 14.4% to 3.3%. The enhanced ultrasonic microfluidic structure proposed in this study shows great potential for widespread applications in micro-scale flow field disturbance and particle manipulation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
生物医学工程学杂志
生物医学工程学杂志 Medicine-Medicine (all)
CiteScore
0.80
自引率
0.00%
发文量
4868
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信