Susmit Mhatre, Rai Anjali, Pulkit Sahai, John Auden, Somnath Singh, Ya Fatou Njie Mbye, Sunny E Ohia, Catherine A Opere
{"title":"谷胱甘肽调节硫化氢的释放和二烯丙基多硫化物的眼压作用","authors":"Susmit Mhatre, Rai Anjali, Pulkit Sahai, John Auden, Somnath Singh, Ya Fatou Njie Mbye, Sunny E Ohia, Catherine A Opere","doi":"10.3390/ph17101408","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hydrogen sulfide (H<sub>2</sub>S) is an endogenous transmitter with the potential to regulate aqueous humor dynamics and protect retinal neurons from degeneration. The aim of the present study was two-fold: (a) to evaluate the release of H<sub>2</sub>S from two polysulfides, diallyl disulfide (DADS), and diallyl trisulfide (DATS); and (b) to investigate their ocular hypotensive actions in normotensive male and female rabbits in the presence and absence of GSH.</p><p><strong>Materials and methods: </strong>H<sub>2</sub>S was quantified hourly for up to 6 h using a H<sub>2</sub>S-Biosensor (World Precision Instruments, Sarasota, Fl). Intraocular pressure (IOP) was assessed in normotensive New Zealand Albino rabbits using a pneumotonometer (model 30 classic; Reichert Ophthalmic Instruments, Depew, NY, USA).</p><p><strong>Results: </strong>In the presence of GSH, there was an increase in the in vitro release of H<sub>2</sub>S produced by DADS and DATS. Both DADS and DATS also caused a dose-dependent reduction in IOP in male and female rabbits, in both treated and untreated eyes. For instance, in male animals, the presence of GSH (3% and 5%) significantly (<i>p</i> < 0.05, <i>n</i> = 5) enhanced the ocular hypotensive action of DADS (2%) and DATS (2%) from 14.02 ± 2.89% to 18.67 ± 5.6% and from 16.22 ± 3.48 to 23.62 ± 5.79%, respectively.</p><p><strong>Conclusions: </strong>GSH enhanced both H<sub>2</sub>S release and ocular hypotensive action of the polysulfides in a manner that was dependent on the number of sulfur atoms present in each polysulfide. Furthermore, female animals were less sensitive to the IOP-lowering action of the polysulfides, when compared to their male counterparts.</p>","PeriodicalId":20198,"journal":{"name":"Pharmaceuticals","volume":"17 10","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510538/pdf/","citationCount":"0","resultStr":"{\"title\":\"Glutathione Modulates Hydrogen Sulfide Release and the Ocular Hypotensive Action of Diallyl Polysulfide Compounds.\",\"authors\":\"Susmit Mhatre, Rai Anjali, Pulkit Sahai, John Auden, Somnath Singh, Ya Fatou Njie Mbye, Sunny E Ohia, Catherine A Opere\",\"doi\":\"10.3390/ph17101408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Hydrogen sulfide (H<sub>2</sub>S) is an endogenous transmitter with the potential to regulate aqueous humor dynamics and protect retinal neurons from degeneration. The aim of the present study was two-fold: (a) to evaluate the release of H<sub>2</sub>S from two polysulfides, diallyl disulfide (DADS), and diallyl trisulfide (DATS); and (b) to investigate their ocular hypotensive actions in normotensive male and female rabbits in the presence and absence of GSH.</p><p><strong>Materials and methods: </strong>H<sub>2</sub>S was quantified hourly for up to 6 h using a H<sub>2</sub>S-Biosensor (World Precision Instruments, Sarasota, Fl). Intraocular pressure (IOP) was assessed in normotensive New Zealand Albino rabbits using a pneumotonometer (model 30 classic; Reichert Ophthalmic Instruments, Depew, NY, USA).</p><p><strong>Results: </strong>In the presence of GSH, there was an increase in the in vitro release of H<sub>2</sub>S produced by DADS and DATS. Both DADS and DATS also caused a dose-dependent reduction in IOP in male and female rabbits, in both treated and untreated eyes. For instance, in male animals, the presence of GSH (3% and 5%) significantly (<i>p</i> < 0.05, <i>n</i> = 5) enhanced the ocular hypotensive action of DADS (2%) and DATS (2%) from 14.02 ± 2.89% to 18.67 ± 5.6% and from 16.22 ± 3.48 to 23.62 ± 5.79%, respectively.</p><p><strong>Conclusions: </strong>GSH enhanced both H<sub>2</sub>S release and ocular hypotensive action of the polysulfides in a manner that was dependent on the number of sulfur atoms present in each polysulfide. Furthermore, female animals were less sensitive to the IOP-lowering action of the polysulfides, when compared to their male counterparts.</p>\",\"PeriodicalId\":20198,\"journal\":{\"name\":\"Pharmaceuticals\",\"volume\":\"17 10\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510538/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceuticals\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/ph17101408\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/ph17101408","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Glutathione Modulates Hydrogen Sulfide Release and the Ocular Hypotensive Action of Diallyl Polysulfide Compounds.
Background: Hydrogen sulfide (H2S) is an endogenous transmitter with the potential to regulate aqueous humor dynamics and protect retinal neurons from degeneration. The aim of the present study was two-fold: (a) to evaluate the release of H2S from two polysulfides, diallyl disulfide (DADS), and diallyl trisulfide (DATS); and (b) to investigate their ocular hypotensive actions in normotensive male and female rabbits in the presence and absence of GSH.
Materials and methods: H2S was quantified hourly for up to 6 h using a H2S-Biosensor (World Precision Instruments, Sarasota, Fl). Intraocular pressure (IOP) was assessed in normotensive New Zealand Albino rabbits using a pneumotonometer (model 30 classic; Reichert Ophthalmic Instruments, Depew, NY, USA).
Results: In the presence of GSH, there was an increase in the in vitro release of H2S produced by DADS and DATS. Both DADS and DATS also caused a dose-dependent reduction in IOP in male and female rabbits, in both treated and untreated eyes. For instance, in male animals, the presence of GSH (3% and 5%) significantly (p < 0.05, n = 5) enhanced the ocular hypotensive action of DADS (2%) and DATS (2%) from 14.02 ± 2.89% to 18.67 ± 5.6% and from 16.22 ± 3.48 to 23.62 ± 5.79%, respectively.
Conclusions: GSH enhanced both H2S release and ocular hypotensive action of the polysulfides in a manner that was dependent on the number of sulfur atoms present in each polysulfide. Furthermore, female animals were less sensitive to the IOP-lowering action of the polysulfides, when compared to their male counterparts.
PharmaceuticalsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
6.10
自引率
4.30%
发文量
1332
审稿时长
6 weeks
期刊介绍:
Pharmaceuticals (ISSN 1424-8247) is an international scientific journal of medicinal chemistry and related drug sciences.Our aim is to publish updated reviews as well as research articles with comprehensive theoretical and experimental details. Short communications are also accepted; therefore, there is no restriction on the maximum length of the papers.