Shaozhou Pu, Jiadan Song, Hongbing Lu, Wenli Zhang, Liang Li
{"title":"高灵敏度和空间分辨率台式锥形束 XFCT 成像系统,采用像素化光子计数探测器,使用增强型多像素事件校正方法。","authors":"Shaozhou Pu, Jiadan Song, Hongbing Lu, Wenli Zhang, Liang Li","doi":"10.1088/1361-6560/ad8b0b","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>High atomic number element nanoparticles have shown potential in tumor diagnosis and therapy. X-ray fluorescence computed tomography (XFCT) technology enables quantitative imaging of high atomic number elements by specifically detecting characteristic x-ray signals. The potential for further biomedical applications of XFCT depends on balancing sensitivity, spatial resolution, and imaging speed in existing XFCT imaging systems.<i>Approach.</i>In this study, we utilized a high-energy resolution pixelated photon-counting detector for XFCT imaging. We tackled degradation caused by multi-pixel events in the photon-counting detector through energy and interaction position corrections. Sensitivity and spatial resolution imaging experiments were conducted using PMMA phantoms to validate the effectiveness of the multi-pixel events correction algorithm.<i>Main results.</i>After correction, the system's sensitivity and spatial resolution have both improved. Furthermore, XFCT/CBCT dual-modality imaging of gadolinium nanoparticles within mice subcutaneous tumor was successfully achieved.<i>Significance.</i>These results demonstrate the preclinical research application potential of the XFCT/CBCT dual-modality imaging system in high atomic number nanoparticle-based tumor diagnosis and therapy.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-sensitivity and spatial resolution benchtop cone beam XFCT imaging system with pixelated photon counting detectors using enhanced multipixel events correction method.\",\"authors\":\"Shaozhou Pu, Jiadan Song, Hongbing Lu, Wenli Zhang, Liang Li\",\"doi\":\"10.1088/1361-6560/ad8b0b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective.</i>High atomic number element nanoparticles have shown potential in tumor diagnosis and therapy. X-ray fluorescence computed tomography (XFCT) technology enables quantitative imaging of high atomic number elements by specifically detecting characteristic x-ray signals. The potential for further biomedical applications of XFCT depends on balancing sensitivity, spatial resolution, and imaging speed in existing XFCT imaging systems.<i>Approach.</i>In this study, we utilized a high-energy resolution pixelated photon-counting detector for XFCT imaging. We tackled degradation caused by multi-pixel events in the photon-counting detector through energy and interaction position corrections. Sensitivity and spatial resolution imaging experiments were conducted using PMMA phantoms to validate the effectiveness of the multi-pixel events correction algorithm.<i>Main results.</i>After correction, the system's sensitivity and spatial resolution have both improved. Furthermore, XFCT/CBCT dual-modality imaging of gadolinium nanoparticles within mice subcutaneous tumor was successfully achieved.<i>Significance.</i>These results demonstrate the preclinical research application potential of the XFCT/CBCT dual-modality imaging system in high atomic number nanoparticle-based tumor diagnosis and therapy.</p>\",\"PeriodicalId\":20185,\"journal\":{\"name\":\"Physics in medicine and biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics in medicine and biology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6560/ad8b0b\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/ad8b0b","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
High-sensitivity and spatial resolution benchtop cone beam XFCT imaging system with pixelated photon counting detectors using enhanced multipixel events correction method.
Objective.High atomic number element nanoparticles have shown potential in tumor diagnosis and therapy. X-ray fluorescence computed tomography (XFCT) technology enables quantitative imaging of high atomic number elements by specifically detecting characteristic x-ray signals. The potential for further biomedical applications of XFCT depends on balancing sensitivity, spatial resolution, and imaging speed in existing XFCT imaging systems.Approach.In this study, we utilized a high-energy resolution pixelated photon-counting detector for XFCT imaging. We tackled degradation caused by multi-pixel events in the photon-counting detector through energy and interaction position corrections. Sensitivity and spatial resolution imaging experiments were conducted using PMMA phantoms to validate the effectiveness of the multi-pixel events correction algorithm.Main results.After correction, the system's sensitivity and spatial resolution have both improved. Furthermore, XFCT/CBCT dual-modality imaging of gadolinium nanoparticles within mice subcutaneous tumor was successfully achieved.Significance.These results demonstrate the preclinical research application potential of the XFCT/CBCT dual-modality imaging system in high atomic number nanoparticle-based tumor diagnosis and therapy.
期刊介绍:
The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry